Trade Theory (2nd Year)

Multiple Choice
Practice
Questions for
ONLINE/OMR
AITT-2020
INSTRUMENT
MECHANIC

FUNDAMENTALS OF MEASUREMENT SYSTEM & INSTRUMENTATION

1.	The de (a) (b) (c) (d)	esirable Static characteristic of a mea Accuracy & Reproducibility Accuracy , Sensitivity & Reproducibi Drift & Dead zone Static Error		ystem a	are:			
2.	The ra (a) (b)	tio of maximum displacement deviation Static sensitivity Dynamic Deviation	on to ful (d)	(c)	deviation of the instrument is called : Linearity on or Accuracy			
3.	The ab (a) (b)	oility to give same output reading whe Stability Repeatability	n same (d)	input value is applied repeatedly is known as (c) Accuracy Sensitivity				
4.	The st is called (a) (b) (c) (d)	•	it nent	put, the	en the input is invariant with respect to time			
	(a) (b)	e in output of sensor with change in i Threshold Slew Rate est change in which a sensor can dete	•	sensor i (c) (d)	is : Sensitivity None of the above			
0.	(a) (b)	Resolution Accuracy	, ,	(c)	Precision Scale			
	(a) (b) What i	ness of measured value to true value Accuracy Precision s the term used to express the ability		(c) (d) asuring	Correction Uncertainty system to maintain its standard			
	(a) (b)	nance? "0" Stability Stability		(c) (d)	Sensitivity Linearity			
9.	Which (a) (b)	of the following is caused by careless Systematic Error Gross Error	s handlii	ng ? (c) (d)	Random Error None of the above			
10.	Which (a) (b)	of the following is not a Fundamental Length Angle	l Quanti (c)	ty? Time (d)	Luminous Intensity			
11.	Which (a) (b)	of the following error is caused by po Random Error Gross Error	or calib (c)		f the instrument? natic Error Precision Error			
12.		of the following represents an SI Unit Lumen Candela	t of Lum (c)		ntensity?			

13. The region in which the output doesn't change with increase in input is called :

	(a) (b)	Input Range Threshold	(c)	Offset (d)	Saturation
14.	The ra	nge between a maximum and a minir	mum va	lues is a	applied to a parameter which can be
	(a) (b)	Repeatability Span	(c)	Input F (d)	Range Output Range
15.	The m (a) (b)	inimum input of physical parameter th Threshold Sensitivity	nat will o	create a (c) (d)	detectable out change is called Span Precision
16.	The to	tal operating range of the transducer Span	is calle	d	Offset
17.	(b)	Threshold of the following is not a static propert	ty ?	(d)	Drift
	(a) (b)	Repeatability Hysteresis	(c)	(d)	ency response Saturation
18.	(a)	of the following is not a dynamic Cha Frequency Response	racteris (c)	Settlin	g Time
19.	(b) The ur (a)	Saturation ndesirable Characteristics of a measu Drift	ring sys	(d) stem is _: (c)	Response time Non Linearity
	(b)	Dead zone		(d)	All of these
20.	If the ir (a) (b)	nstrument is used in wrong manner w Systematic Error Instrument Error	hile ap _l	olication (c) (d)	n , then it will results in Random Error Environmental Error
21.	The sy (a) (b) (c) (d)	rstematic errors of an instrument can The sensitivity of instrument to envir The sensitivity of instrument to envir Systematic errors does not depend of None of these	onment	tal input tal input	as low as possible as high as possible
22.	Rando (a) (b)	m errors in a measuring system are of Environmental changes Use of uncalibrated instrument	due to (d)	(c) Unpre	Poor cabling Practices dictable effects
23.	The de (a) (b)	egree of closeness of the measured v Accuracy Precision	alue of	a certai (c) (d)	n quantity with its true value is known as: Standard Sensitivity
24.	Error c (a) (b) (c) (d)	of measurement = True value-measured Value Precision-True value Measured Value-Precision None of the above			
25.	The ab		n detect	t small o (c) (d)	differences in the quantity being measured Accuracy none of the above
26.	. ,	npare an unknown with a standard th Direct comparison Indirect Comparison	rough a (c) (d)	calibra Both 'a	

27.	The fo (a)	llowing is an ir MKS	nternatio (b)	nally re FPS	cognize	ed and a	accepted ur SI	nit system (d)	All of these	
28.	One Y (a)	ard =i 36	nch (b)	38		(c)	40	(d)	42	
29.	Respo (a) (b)	nse of a syste impulse resp unit step resp	onse	among t	the follo	(c)	frequency esponse	response		
30.	Degree		instrume	ent indic	ates the	e chang	es in meas	ured varial	ble without dynamic error i	s
31.	(a) (b)	Speed of res Reproducibili suring system Sensors	ty of ins			(c) (d)		haracterist		
	(b)	Variable conv	version (element	S	(d)	All of thes		· · · · · · · · · · · · · · · · · · ·	
32.								w the insta	ntaneous value and	
		rated by comp		with an a						
	(a) (b)	Absolute inst Secondary in		nt .	(c)	(d)	ding instrun	nent g instrume	nt	
33.	` '	ccuracy of mea			ent at hi	` '		y ii isti ui iie	iit.	
	(a)	Decrease				(c)	increase			
	(b)	Become zero			(d)		not change			
34.		fference betwe	een mea	asured v	alue an				me is called:	
	(a)	Static error			(-1)	(c)	absolute e	error		
25	(b)	Dynamic erro			(d)	none o	of these			
35.	runda (a)	mental units a Dependent	re:			(c)	either a or	·h		
	(b)	Independent			(d)	` '	of these	D		
36.	` '	d units can be		sed in te						
	(a	Fundamental	units		(c)	calibra	ated units			
	(b)	SI units				(d)	CGS Units			
37.		of the followin	•	•				•	ents?	
	(a)	Precision				(c) Drift	resolution			
	(b)	Fidelity			(d)	DIIIL				
38.	The fu	ndamental uni	ts of SI	system	are the	same a	as that of ;			
	(a)	MKS system		•	(c)	CGS I	Jnits			
	(b)	FPS System				(d)	None of the			
39.			me outp	out read	ing whe			e is applied	d repeatedly is known as:	
	(a)	Accuracy				(c)	Stability	:1:4、/		
40.	(b) Precis	Sensitivity ion is the :				(d)	Repeatab	IIILY		
- 0.	(a)	Degree of ex	actness		(c)Abil	itv to re	sponse			
	(b)	Closeness of					of measure	d variable		
مسمر	. ,		•		` ,				ATION	
4115WE	15 . <u>FU</u>	<u>NDAMENTAL</u>	S OF IVI	EASUR	EIVIEIN	3131	<u>EIVI & IIVS I</u>	RUMENT	ATION	
1-	В	2- C		3- B		4- A	5-	С	6- A	
7-		8- B		9- B		10- B	11		12-B	
13-		14-B		15-B		16-A		-C	18-B	
19-		20-B		21-A		22-D	23		24-A	
25- 31-		26-B 32- B		27-C 33-A		28-A 34-A	29 35	-C -B	30- C 36-B	
01	_	02 0		00 / 1		J 1 / 1	55	_		

37-B

38-A

39-D

40-A

STRESS & STRAIN MEASUREMENT

1.	LVDT stands for (a) Linear virtual Double Transformer				
	(b) Linear Virtual Differential Transduce	er			
	(c) Linear Variable Differential Transdu	cer			
	(d) Linear Variable Differential Transfor	mer			
2	LVDT works on the principle of				
۷.	LVDT works on the principle of (a) Variable resistance	<u> </u>	Variab	le capacitance	
	(b) Variable inductance	(d)		ole capacitance ole pressure	
	(b) Variable inductance	(u)	variab	ne pressure	
3.	How many coils are required to make LVD		_		_
	(a) 4 (b) 6	(c)	3	(d)	2
4.	LVDT is a Transducer.	()			
	(a) Displacement	(c)			
_	(b) Photoelectric	(d)	Chemi	ical	
5.	Which of the following is a displacement T	ransduc	er.	0 0	
	(a) Thermistor		(c)	Strain Gauge	
	(b) LVDT			Thermocouple	9
6.	Electrical Strain Gauge works on the princi	ple of $_$			
	(a) Variation of resistance			Variation of in	ductance
	(b) Variation of capacitance				
7.	Commonly used elements for wire strain ga				
	(a) Nickel & Copper		(c)	Gold & Brass	
	(b) Nickel & Gold			& Aluminium	
8.	Proper functioning of a strain gauge depen				
	(a) Strain	(c)	Bondir	ng	
	(b) Stress	(d)	Length	n of wire	
9.	Resistance wire gauges come in				
	(a) 4 forms		(c)	6 forms	
	(b) 2 forms		(d)	8 forms	
10.	Commonly used electrical strain gauge is _				
	(a) Open type		(c)	Unbonded typ	e
	(b) Closed type		(d)	Bonded type	
11.	Resistance of the stain gauge must be				
	(a) Zero (b) Small	(c)	Large	(d)	Medium
12	Strain gauge has a				
12.	Strain gauge has a (a) Low temperature co-efficient of resi	ctanco			
	(b) High temperature co-efficient of res				
	(c) Zero temperature co-efficient of res				
	(d) Infinite temperature co-efficient of res				
12	Load cell is used for the measurement of _	zsisiaiiu	æ		
13.		(0)	Mass	(4)	Longth
11	(a) Area (b) Force Strain is a	(c)	iviass	(d)	Length
14.					
	(a) Fractional change in Volume				
	(b) Fractional change in Area				
	(c) Fractional change in length				
	(d) fractional change in height				
15.	LVDT windings wound on		(-)	□ !!	
	(a) Steel sheets		(c)	Ferrite	
4.0	(b) Aluminium		(d)	Copper	
16.	What is the principle of operation of LVDT	(6)	_		
	(a) Mutual Inductance	(C)	Perme		
	(b) Self Inductance		(d)	Reluctance	

17.	(a) [on counter is used for the me Displacement Speed	easurer	nent of (c) (d)	Acceleration None of these
18.	In a LVI (a) a (b) v (c) v	DT, the two secondary voltage are independent of core positivary unequally depending on the vary equally depending on the are always in phase quadrature	on the core core p	e positi	on
19.	` '	cell is a Strain Gauge Photovoltaic cell		(c)	Thermistor (d) Pressure pick up
20.	(a) I	f the following quantities canr Pressure Femperature	not be	measur (d)	ed by a Load cell? (c) Level All of the above
21.	(a) <i>i</i>	f the following can be measu Angular speed Linear speed	red usi	ng Tacł (c) (d)	nometer? Acceleration Vibration
22.	(a) S (b) S (c) S	of the following is correct for A Sensitivity of AC tachometer is Sensitivity of DC tachometer is Sensitivity of both are equal None of the mentioned	s very	high	meters.
23.	Which o (a) (b)	f the following instruments me Vibrometers Seismometers	easure	amplitu (c)	ude of vibrating body. Both a & b (d) None of these
24.	A Tacho (a) (b)	meter is a device used to mea Gravitational pull Speed of rotation	asure	(c) (d)	Surface tension Dispersive power
25.	The frequ (a) (b)	uency of rotation in some rota VTVM Tachometer	ting ma	achinery (c) Strobo	Spectral meter
26.	(a) (b)	It of the LVDT is in the form o Pulses high frequency signals		` '	ry movement of core ar displacement of core
27.	(a) (b)	ope is used for the measurem rpm of a flywheel depression of freezing point	(c)		ncy of light I under pressure
28.	Load cell i (a) (b)	s an electromechanical device Static force Dynamic force	e and i	s widely Tempe (d)	
29.	RVDT sta (a) (b) (c) (d)	nds for: Rotary variable differential T Rotary valuable differential T Rotary valuable differential T None of these	Transfo	rmer	

30. Stress is

	(a) (b)	External force Internal force	(d)	(c) radial fo	Excel force orce
31.	Followi (a) (b)	ng are the basic types of stre Tensile stress Compressive stress	ss exce (d)		Shear stress
32.	(a) Lin (b) No (c) Lin	T the mutual inductance betwear with angular displacement n-linear with angular displace ear with linear displacement n-linear with non-linear displa	nt ment		and secondary coil varies
33.	-	cement measuring instrument Potentiometer (b)	is/are, LVDT		(c) RVDT (d)All of these
34.	(a) A Load (a) (b)	` ,		and is w temper	idely used for measurement of
35.	(a)	cell is essentially a strain gauge Thermistor	(c) (d)		e potentiometer ve transducer
36.	(a) Cha		igè Ín re ange in	sistance length &	on application of strain is mainly due to diameter of wire
37.38.	(a)It has (b) The (c) The (d) It ha Unbond (a) Excl	advantage of strain gauge press poor frequency response y don't have continuous resoluted to the powered by AC sources low output ed strain gauge are lusively used for transducer a	ution ce pplicatio		r are
39.	(c) Com (d) Non	usively used for stress analyst monly used for both a and be e of these the combination of strain gau Dynamometer Load cell		Bridge	m is used for weighting. It is called ckt none of these
40.	Which (a) (b)	is an active transducer? Strain gauge Selsyn	(c) (d)	•	oltaic cell missive cell
41.	` '	enerating type transducers are Active Passive	. ,	tr Second	ansducers.
42.	A trans (a) (b)	sducer that converts measure Active transducer Analog transducer	d into the	(c)	of pulse is called Digital transducer ransducer
43.	Which (a) (b)	of the following is a digital tra Strain gauge Encoder	insduce (c)	Thermi	stor LVDT
44.	Strain (a)	gauge ,LVDT and thermocou Active transducer	ple are		s of Analog transducer

	(b)	Passive transducer		(d) Primary transducer					
45.	Resc	olution of a transducer of	depend c	n					
	(a)	Material of wire			(c)	Diameter of	wire		
	(b)	Length of wire		(d)	Excita				
46.	The size of the air cored transducers in comparison to the iron core parts is;								
	(a)	Smaller (b)	larger		(c)	Same (d)	unpredictable		
47.	The a	application of LVDT is							
	(a)	joint motion		(c)	limb n	novement			
	(b)	Finger movement			(d)	Heart wall m	otion		
48.	Func	tion of transducer is to	convert						
	(a)	Electrical signal into	non elec	ctrical q	uantity				
	(b)	Non-electrical quant	ity into e	lectrica	I signal				
	(c)	Electrical signal into	mechan	ical qua	antity				
	(d)	All of these		-	•				

Answers: STRESS & STRAIN MEASUREMENT

1- d	2- b	3- c	4- a	5- b	6- a	7-a
8- c	9- b	10-d	11-b	12-a	13-b	14-c
15-c	16-a	17-b	18-b	19-a	20-b	21-a
22-b	23-c	24-b	25-d	26-d	27- a	28-a
29-a	30-b	31-d	32-a	33-d	34-a	35-c
36-c	37-d	38-d	39-b	40-a	41-b	42-d
43-d	44-c	45-c	46-d	47-c	48-b	

MEASUREMENT OF MOTION, VELOCITY The SI unit of Speed is 1. km/hr (b) m/s cm/min(d) none of these (a) (c) 2. Speed is define as a change of distance the change in distance with respect to time (a) the rate of change of distance (b) (c) distance moved per unit time (d) all of these Which among the following control the speed of DC motor. 3. Galvanometer (c) Potentiometer (b) Gauge meter (d) tachometer Into which energy signal does the position sensor convert the measured position of servometer of 4. servomechanism? Mechanical (b) Electrical (c) thermal (d)Light (a) 5. Revolution counter is used for measurement of Displacement (c) Acceleration None of these (b) Speed (d) Seismic transducer are used to measure 6. Displacement Acceleration (a) (c) (b) Velocity (d) All of these A DC tachometer is used for measurement of 7. Speed of shaft Diameter of shaft (c) (a) Length of shaft (b) None of these A tachometer encoder can be used for measurement of displacement 8. in both the direction (a)

(b) in one direction only (c) its output pulses are counted only for the forward direction. none of these (d) A tachometer has 9. (a) one output (c) three output two output (d) All of these (b) 10. In DC tachometer the polarity of output indicates polarity of connection to the electric circuit (a) direction of the rotation (b) (c) both a and b none of these (d) 11. Tachometer is used to measure

angular velocity time (a) (c) displacement (b) (d) vibration **Answers: Measurement of Motion, Velocity** 1-b 2-d 3-d 4-b 5-b 6-d 7-a 8-c 9-c 10-d 11-a

PRESSURE MEASUREMENT

1.	Which (a) (b)	of the following conversion Pressure to Displacement Pressure to voltage		ace in bourdon tubes? Pressure to strain Pressure to force						
2.	Which (a) (b)	of the following devices co Diaphragm Bellow	•	(c)Ca	•					
3.	The ination (a) (b)	struments used for the mea Bellows Diaphragms			er optic Pressure s	sensor				
4.	Bourdo (a) (b)	on tube is used for the mea Gas Liquid fluid	asurement	of gaug (c) (d)	ge pressure of Solid Both "a" & "b"					
5.	Dead v (a) (b)	weight gauge is used for th About 1000bar About 2000bar	e measure	ement o (c) (d)	of pressure of About 5000bar About 7000bar					
6.	When (a) (b)	visual indication of pressur Manometers Diaphragm sensors	re level is (c) (d)	Bourd	d then the instrume Ion tube nant wire device	ent general	ly used is			
7.	Which (a) (b)	of the following is not a typ Bellows Bourdon tube	oe of Press (d)	(c)	nsing element? Manometer e plate					
8.	Absolution (a) (b) (c) (d)	ute Pressure is : Gauge pressure + Atmosp Gauge Pressure – Atmosp (Gauge Pressure + Atmosp None of the Above	pheric Pre	ssure	/2					
9.	A Pres (a)	ssure instrument is calibrate 600 (b) 100		00 to 60 (c)	0 psi. The span of 500	this (d)	instrument is : 400			
10.	Norma (a) (b)	al force acting per unit cross Weight Pressure	s sectiona (C)	l area is Volum (d)						
11.	(a) (b)	ure in fluid depends on: depth below the surface density of fluid	(d)	(c) all of	the value of g he above					
12.	As dep (a) (b)	oth increases the pressure increases decreases	in fluid :	(c) (d)	remains constant	t				
13.	The pr (a) (b)	inciple of pirani gauge is ba Combustibility thermal conductivity	ased on _ (c) (d)	humic	of the medium. lity of these					
14.	(a)	can measure press Rotameter	ure directl	y. (c)	LVDT					

	(a)	Bourdon tube	(a)		gauge
15.		cannot be used to mea	•		
	(a)	strain gauge	(c)	LVDT	
	(b)	Pyrometer		(d)	Pirani gauge
16.	The di	fference between gauge & ab	solute p	ressure	e is:
	(a)	A Vacuum		(c)	Atmospheric pressure
	(b)	0.433 psi		(d)	Zero
17.		ure is defined as :		()	
	(a)	Force per unit area	(c)	A/ F	
	(b)	F. A	(0)	(d)	None of these
18.		s used in bourdon tubes should	d not ur		None of these
10.				•	
	(a)	fatigue	(c)	creep	
	(b)	hysteresis		(d)	all of these
40					
19.	-	sule diaphragm is made by we	_		
	(a)	to a solid base	(c)		er at the centre
	(b)	together around the edge	(d)	to two	other diaphragms
20.	Dead	weight tester is used for :			
	(a)	testing dead weights			
	(b)	measuring process pressure	accura	tely	
	(c)	producing high pressure			
	(d)	calibrating pressure instrume	ents		
	. ,	•			
21.	One to	orr is defined as:			
	(a)	one mm hg		(c)	one atmosphere
	(b)	one inch hg		(d)	one kilopascal
	(-)	3		(-)	
22.	Which	gauge measures pressures b	v sensi	na char	nges in the thermal conductivity of a gas?
	(a)	Pirani gauge	(c)		d gauge
	(b)	Slack diaphragm gauge	(-)	(d)	None of them
	(5)	Sidok diapinagin gaago		(Δ)	Trong of anom
23.	A then	mocouple gauge is one type o	of:		
	(a)	Ionization gauge		(c)	Mcleod gauge
	(b)	Thermal conductivity gauge	(d)	` '	of these
	(6)	mermal conductivity gauge	(u)	110110	or these
24.	The fu	II range from atmospheric pre	ssure to	a perfe	ect vacuum is :
	(a)	14.7 psi (b) 0.40 to		(c)	7.14 psi (d) 0.01 torr
	(ω)	(b) 0.10 to	, , ,	(0)	(a) 0.01 (0)
25.	Dianhi	ragms used in pressure applic	ation a	ırΔ·	
25.	-		allon a		slack
	(a)	light	(പ)	(c)	
	(b)	small in size	(d)	bimeta	AIIIC
26	Λ Ν /οΙα	and gouge can macaure proce	ro oo l	lov. 00 :	
26.		eod gauge can measure press	sure as		
	(a)	0.05 torr		(c)	0.0005 torr
	(b)	0.005 torr		(d)	0.00005 torr
27.		type of manometer is best for	measur	•	
	(a)	Well		(c)	U- tube
	(b)	Inclined		(d)	Multiple tube
			_		
28.		are the basic pressure elemer			
	(a)	u-tube	(c)		vs & diaphragms
	(b)	siphons		(d)	capillary tubes
29.	A capa	acitive pressure transducer inc			
	(a)	voltage output of an AC circu	uit (c)	Capac	citance

	(b)	Frequency		(d)	alternating cur	rrent	
30. 31.	(a) A Bard	•		(c) n absolu	its – Linearity ute & gauge amic pressure	(d)	output
32.	Pressu (a) (b)	ure of 0.0001 psi absolute can Mcleod gauge Pirani gauge	be mea (c) (d)	Therm	by: locouple gauge on gauge		
33.	Maxim (a)	num differential pressure in liqu 20 psi (b) 30 psi (c)					
34.	(a)	vs are made of : Leather Paper		(c)	Plastic Thin copper		
35.	Instrur (a) (b)	ments that measure pressure a Non-linear Linear	are gen	(c)		esis	
36.	Densit (a)	ty of water is than More (b)Less	mercury		n a and b	(d)non	e of these
37.	Full fo (a) (b)	rm of nm stands for Newton meter Nanometer	(c)	Neon (d)	milli number of mo	les	
38. 39.	(a) (b) Piezo (a)	of the following conversion ta Pressure to displacement Pressure to voltage electric transducer work when Mechanical force Vibration	(c)	Pressu Pressu oly (c)	ure to strain ure to force		
40.	(a)	force calculated as Right angle	Pressu	re. (c)	Parallel		
41. 42.	(a)	Inclined angle ential pressure gauge have 2 (b) 3 spheric pressure is typically ab 100 (b) 200		Slantir inlet (c)	•	(d) a level. (d)	5 400
43.	The U (a) (b)	-tube was invented by Newton Christian huygen		(c) (d)	Evangelista Tonone of these		
44.	Which (a) (b)	instrument called force balance. Thermocouple gauge Servo pressure transducer	ce press (c) (d)	Therm	insducer? al conductivity gauge	gauge	
45. 46.	(a) (b)	ute pressure is abbreviated as kg/cm² Mpa = kg/cm²	(c)	psig (d)	psia		

(a) 10 (b) 100 (c) 1000 (d) All of these

Answers: PRESSURE MEASUREMENT

1-a	2- d		3- d		4- d		5- d		6-a		7- d
8- a	9- c		10- b		11- d		12-a		13- b		14- b
15- b 16- c		17- a		18- b		19- b		20- d		21- a	
22- b 23- b		24- a		25- с		26- d		27- b		28- с	
29- с 30- а		31- a		32- a		33- b		34- d		35- b	
36-b 37-b		38-a		39-a		40-a		41-a		42-a	
43-b 44-b		45-d		46-a							

FLOW MEASUREMENT

1.		of the following flow measuring flow characterization anywhere in the loop Target Venturi		ng eler Pitot to Turbin						
2.	Bernor (a) (b) (c) (d)	ulli's Equation is a mathematical expr The ratio of kinetic to viscous force i Friction loss as fluid moves through Potential and Kinetic energies in a fl Vertical height and Pressure for a st	n a flow a rough ow strea	stream pipe am	1					
3.	As a c (a) (b) (c) (d)	compressible fluid moves through a restriction, Velocity decreases and Pressure increases Velocity increases and Pressure remain the same Velocity increases and Pressure decreases Velocity increases and Pressure decreases								
4.	A flag (a) (b)	flapping in the breeze illustrates what Vortex shedding Transitional Flow	type of	dynam (c) (d)	ic fluid effect? Coriolis effect Laminar effect					
5.	A mag (a) (b)	netic flowmeter will not properly mea Dirty water Milk	sure the	flow ra (c) (d)	nte of : oil Caustic					
6.	Orifice (a) (b)	flow measuring installation is suitable Slurry flow Gas Flow	e for :	(c) (d)	Steam flow Laminar flow					
7.	Identify (a)	y which of the following flowmeters in thermal (b) Magnetic	-	meası v nozzl						
8.	Which (a) (b)	of the following instruments used to revenue to the Venturi meter orifice	measure (c) (d)	Nozzle	n the application of Bernoulli's theorem? he above					
9.	The er (a) (b)	rrors generated in the pitot tube due to Position errors normal errors	o the loo (c) (d)	Neglig	re called ible errors re errors					
10.	For the (a) (b)	e measurement of flow the cheapest of Venturi Dall flowtube	device is (c) (d)	Flow r	nozzle tatic tube					
11.	Which (a) (b)	of the following represents obstruction Centrifugal force type Rotating vane system	on type f (c) (d)	Flow r	asuring systems? nozzle device of these					
12.	(a) (b)	te at which fliud flows through a close Determine the mass flow rate Determine the volume flowrate	(c) (d)	Either None	"a" or "b" of these					
13.	The de (a) (b)	evice which is used for making tempo venturi Dall flowtube	rary me (c) (d)	Orifice						

14.	(a)	evice cannot be used for flow obstru Orifice plate	(c)			Dall tube
15.	(b) For ac (a) (b) (c) (d)	Venturi tube curate operation orifice plate flowm Laminar Flow Fully developed turbulent flow Swirlles & Eddiles in the flowstread Transitional flow		Spherouired:	Э	
16.	Compr	ressible flow is a flow that deals with	า			
	(a) (b)	Fluid temperature Fluid Pressure	(c)	Fluid o	lensity Jeometr	у
17.	(a) (b)	ressible flow mainly deals with: Solid dynamics Liquid dynamics		(c) (d)	-	ynamics liquid dynamics
18.	Bernou (a) (b)	ulli's equation cannot be applied wh Rotational Turbulent	en the flo	ow is (c) (d)	unstea All of t	•
19.	` '	Ids number signifies the ratio of: Gravity forces to Viscous forces Inertia Forces to viscous forces Inertia forces to gravity forces Buoyant forces to inertia forces		(d)	7 til Ol ti	
20.		cit velocity in the nozzle increases a Stagnation Point Continuity equation	s per (d)	(c) None	Newto	n's law
21.	(a) (b)	ne increase in pressure, the exit velo Decreases Increases	•	(c) (d)	Same Indepe	
22.	Which (a)	among the following is the formula Q=V/A (b) Q=AV (c)	for volum Q=A+\		w rate? (d)	Q=A-V
23.		among the following is the formula Q=M/P(b) Q=MP (c) Q=N			e? Q=M-F	o.
24.	By a F (a) (b)	Rotameter we can measure: Specific gravity Viscosity		(c) (d)	Flow Rotatio	on
25.	(a) (b)	measures velocity at a point Venturi meter pH meter	nt of fluid i (c)		tatic tub	e of these
26.	Which (a) (b)	of the following represents the corr Direct proportionality Indirect Proportionality	ect relation (c)	on betw Equal (d)		a of pipes. of these
27.	Which (a) (b)	of the following converts flow to rot Rotating vane system rotameter flow system	ational m (c) (d)	Both "a	a" & "b" of these	ı
28.	Centrif (a) (b)	rugal force elements are used for High Flow rate Low Flow rate	(c) (d)		ge of flo	

29.30.	(a) S Example (a) \ (b) \ (c) F	ers based met Solid (b) e of positive di Variable area f Turbine flowme Rotary piston r Venturi	Liquid (c) splacement m lowmeter eter	Gas	easurer (d)	nent of flow: All of these				
31.	(a) 1	ls's number of Turbulent flow _aminar Flow	1000 indicates	S	(c) (d)	Either "a" o				
32.	(a) I	ndustrial appli			(c)	Both "a" &				
33.	Which o (a)	_aboratory of the following Venturi Meter Rotameter	flow-metering	instrun	nents is (c)	an area me Pitot tube	ne of these ter? wire anen			
34.	(a) F (b) I (c) F	te through an O Proportional to nversely propo Proportional to nversely propo	the pressure ortional to the to the square ro	square ot of pre	root of pessure of	differential				
35.	(a) F	Nozzle is a Pneumatic con Hydraulic conti			(c) (d)	Electronic of Both a & b	controller			
36.	V-notch (a) a (b) a (c) v	is used to mean open chann open chann a non-circular overtical Pipelin norizontal pipe	asure flow rate nel cross-section o e		qùid in					
37.	(a) f (b) v (c) v	be is used for highly accu when the fluid when the line is both a & c	contains lot of	susper	nded ma					
38.	Which o	of the following V-Notch Rotameter	devics can mo	easure	the larg (c) (d)	est flow rate Orifice met Weir				
39.	(a) \	meter Reynole Viscosity fluid Fluid density	ds number des	scribes (c) (d)	Rate o	f flow f cross secti	ion			
40.	(a) 1	t of Viscosity Newton Centipoises		, ,	(c) (d)	Dyne Kilogram				
41. tempe	(a) ł rature		Lower (c)	Same	·			(d)	Depending u	ipon the
42.	(a) F	iprocating pisto Petroleum indu Steel industry		meter is (c) (d)	-	cal industry				
43.	Pitot tub	es are								

- (a) have high accuracy (c) are economical to install
- (b) have poor accuracy (d) both b and c
- 44. Nutating disc flow meters are extensively are used for
 - (a) residential water service measurement
 - (b) industry flow measurement
 - (c) both a and b
 - (d) None of these
- 45. Centrifugal force elements are used for
 - (a) high flow rate
- (c) medium flow rate
- (b) low flow rate
- (d) none of these

Answers: FLOW MEASUREMENT

1- d	2- c	3- d	4- a	5- c	6- b	7- a
8- d	9- a	10- c	11- c	12- c	13-c	14- d
15- b	16- c	17- c	18- d	19- b	20- b	21- a
22- b	23- b	24- c	25- с	26- a	27- a	28- a
29- a	30- с	31- b	32- a	33- b	34- c	35- a
36- a	37- с	38- d	39-c	40-b	41-b	42-a
43-2	44-2	45-2				

LEVEL MEASUREMENT

1.	The le	evel of liquid under pressure can be d	etermin	ed using							
	(a)	bubbler system	(c	diaphragm box system							
	(b)	differential pressure manometer (d)	air-tra	p system							
2.	Dipsti	cks are used for the:									
	(a)	Pressure measurement	(c)	Displacement Measurement							
	(b)	Flow Measurement (d)	Level	Measurement							
3.	The n	nost common application of float syste	em is								
	(a)	To monitor the fuel tank level in mo	tor vehi	cle							
	(b)	To monitor the flow of solid									
	(c)	To monitor the flow of liquid									
	(d)	All of these									
4.	Capa	citive devices are used for the level m	neasure	ment of							
	(a)	only liquid	(c)	Both a and b							
	(b)	Solid in powdered form	(d)	None of these							
5.	In Ult	rasonic level gauge ,the ultrasonic so	urce is p	placed at the							
	(a)	Bottom of the vessel containing the	liquid								
	(b)	Top of the vessel containing the liqu	uid								
	(c)	Middle of the vessel containing the	liquid								
	(d)	Far from the vessel containing the I	iquid								
6.	In rad	liation methods , the detector system	is locate	ed at							
	(a)	The top of the liquid filled tank									
	(b)	The bottom of the liquid filled tank									
	(c)	Middle of the liquid filled tank									
	(d)	Outside a liquid filled tank									
7.	A vibrating level sensors consists of										
	(a)	One piezoelectric oscillators									
	(b)	Two piezoelectric oscillators									
	(c)	Three piezoelectric oscillators									
	(d)	Four piezoelectric oscillators									
8.		•	ng temp	erature differences of even 0.1 degree Celsius is							
	(a)	Fibre-optic level sensors									
		Laser method									
	(c)	Thermography									
	(d)	Vibrating level sensors									
9.		e-optic level sensors, the amount of li									
	(a)	the proportion of cable that is subm		the liquid							
	(b)	amount of light which is reflected ba		• 1							
	(c)	the proportion of cable that is not in		ıa							
	(d)	amount of light which is not reflecte	а раск								
10.	Which vesse		technolo	ogies cannot be adapted to measure solid level in							
	(a)	Displacer	(c)	Radar							
	(b)	Floatand tape (d)	ÙÍtras	onic							
11.		d argon level in a pressurized storage	tank (a	: 3 kg/cm²) is measured by a/an,							
	(a)	gauge glass	(c)	Differential pressure gauge							
	(b)	External float gauge (d)	None	of these							

12.	Liquid (a) (b)	level in autocalves is measured by Simple float Differential float type manometer			(d)	(c) Glass gauge None of these				
13.	Hydros (a) (b)	ostatic Pressure type level indicator is Direct method (c) Indirect method				Both a and b				
14.	Air pur (a) (b)	urge system level indicator can be use Corrosive liquids Abrasive liquids				the measuring the level of Both a and b None of these				
15.	In radia (a)	adiation level detector when the liquid level in the tank rises, the amount of radiation receiv Increased (b) Reduced (c)Unchanged (d)None of these					adiation received i	s,		
16.	The performance of Capacitance level indic (a) Area of plate (c) (b) Distance between the plate (d)				cator is effected by dirt because they change the Dielectric constant None of these				change the	
Answe 1- b 8- c 15-b	ers : LE	VEL MEASUR 2- d 9- a 16-c	EMENT 3- a 10- a	4- c 11- c		5- a 12- b		6- d 13-b	7- b 14-a	

TEMPERATURE MEASUREMENT

1.		utput of a Bimetallic element v	vill be $_$		
	(a)	Strain	(c)	•	cement
	(b)	Pressure		(d)	Voltage
2.	Which	of the following can be used	for mea	suring ⁻	Femperature ?
	(a)	Metallic Diaphragm	(c)	Capsu	
	(b)	Fluid Expansion System		(d)	Bourdon tube
3.	Which	of the following is used as inc	dication	Instrum	nent in a liquid expansion system?
	(a)	Bellows		(c)	Ammeter
	(b)	Bourdon Tube	(d)	Therm	ometer
4.	The m	ost rugged temperature sensi	ng elem	nent is a	a/an:
	(a)	Thermocouple	(c)	RTD	
	(b)	Orifice plate	(d)	Filled	Bulb
5.	Conve	ert a temperature measuremer	nt of 250	0°C into	Kelvin.
	(a)	523.2 K		(c)	709.7 K
	(b)	-209.7 K		(d)	-23.2 K
6.	A type	J thermocouple is made of th	ne follow	vina me	tals :
٠.	(a)	Aluminium & Tungsten		(c)	Platinum & Rhodium
	(b)	Iron & Constantan	(d)	Chron	nel & Alumel
7.	Resist	ance Temperature Detector is	;		
• •	(a)	A electrical Transducer		(c)	A chemical Transducer
	(b)	A mechanical Transducer	(d)	A phys	sical Transducer
8.	Sensir	ng element in the Thermomete	er must	provide	
0.	(a)	Small change in Resistance			
	(b)	No change in Resistance			
9.	In Opt	ical Pyrometer Temperature is	s meası	ured by	
	•	•		,	
	(a)	Photocell Principle			
	(b) (c)	Thermocouple Effect	the sou	ırce wit	h the brightness os a standard source
	(d)	None of the above	110 300	aroc wit	Title brightness os a standard source
40	D: (III. ()			
10.	(a)	Illic strips are employed in Vapour pressure		tnei (c)	mometers. Metal Expansion
	(b)	Liquid-expansion		(d)	Resistance
	, ,			()	
11.	•	Invar used in bimetallic strips Low density		∐iah t	omporatura registance
	(a) (b)	Low-coefficient of expansion	(c)	•	emperature resistance Ibrasion resistance
	,	·			
12.		ance Thermometer generally			
	(a) (b)	Potentiometer Aurdino	(c)	(d)	bridge Wheatstone bridge
	(6)	AMMINO		(u)	Whodiatone bridge
13.	•	expansion thermometers	are fille		
	(a)	Mercury		(c)	Gallium

	(b)	Amalgam		(d) Cesium
14.	Which (a) (b)	metal is used when radiation pyro Chromel-Alumel Iron-Constantan		ter don't produce a satisfactory result. (c) Copper-Constantan (d) Rhodium-Platinum
15.	A Radi (a) (b)	iation pyrometer is based on Planck's Law (c) Stefan-Boltzmann law (d)		Rayleigh-jeans law Sakuma-Hattori equation
16.	(a)	antan is an alloy containing Nickel & Aluminium (c) Silicon, manganese &aluminium		Copper & Nickel
17.	(a)	ocouple is a Primary Device	(u)	(c) Tertiary Transducer
18.	(b) Operat (a) (b)	Secondary Transducer tion of Thermocouple is governed Peltier effect (c) Seeback effect	•	(d) None of the mentioned Thomson effect (d) All of the mentioned
19.	Therma (a) (b)	ocouple cannot be used to measi Temperature of Gas (c) Temperature of liquid (d)		IR Radiation None of the mentioned
20.	A Ther (a)	mocouple thermometer consists by 1 Wire (b) 2 Wires (c) 3 Wires		
21.		ument that can be used at a distance called Thermocouple thermometer (c) Manometer		which allows scientist to work the instrument at a safer Barometer (d) Infrared thermometer
22.		e Point of Kelvin scale is 00° K (b) 120° K (c) 273	 3.º K	(d) 0° K
23.	Bimeta (a) (b)	Muntz metal (c) Yellow Brass (d)		a metal. Bronze Aluminium
24.	At what (a)	at Temperature are the Celsius ar 40° (b) -40° (c) -0°		ahrenheit equal ? (d) +100 ⁰
25.	Conve (a)	rt 100° C into ° F 212°F (b) 100° F (c)		180° F (d) 200°F
26.	Steam (a)	Point is equal to 100° C ,which is -373° K (b) -173° K	•	ral to (c) 373 ⁰ K (d) 173 ⁰ K
27.	The Te	emperature of water in a beaker is 110°F (b) 104°F (c) 130		
28.	Norma (a)	ll human body's Temperature is 98 320 K (b) 300 K		F. In Kelvin Scale , it is (c) 308 K (d) 310 K
29. (a)	If we o	convert 60° C into Fahrenheit Scal (b) 180°F (c) 140°F (d)		Temperature, We get 250 °F

30.	Which two liquids are used in the construction of maximum thermometers? (a) Mercury & Water (b) Water & Alcohol (c) Mercury & Alcohol (d) Mercury & Bromine
31.	For measuring the temperature of a furnace which is most suitable instrument? (a) Resistance thermometer (c)Optical Pyrometer (b) Thermocouple (d)Bimetallic thermometer
32.	Thermocouples is suitable for measuring (a)Liquid temperature only (b)Very high temperature only (d)Both high & Low temperature
33.	Psychrometer determines (a) Humidity of gases (c)water of crystallization (b) Moisture content of solids (d)hygroscopic nature of solids
34.	(b) Moisture content of solids (d)hygroscopic nature of solids Starting temperature of Optical Pyrometer is: (a) 800°C (b) 400°C (c) 1200°C (d) 1500°C
35.	Which thermocouple can be used to measure temperature around 1400°C? (a) copper-constantan (C) Platinum-Platinum+ rhodium (b) Alumel-chromel (d) copper-alumel
36.	Which of the following is suitable for measuring the temperature of a red hot moving object? (a) Thermocouple (c) Thermistor (b) Radiation pyrometer (d) radiograph
37.	Pick out the most suitable instrument for measuring temperature in the range of 40-800°F? (a) Mercury thermometer (c) Radiation pyrometer (b) Bimetallic thermometer (d) optical pyrometer
38.	Measurement of sub-zero Celsius temperature in industry is done by (a) Thermocouples (c) Gas thermometer (b) Resistance thermometer (d) Bimetallic thermometer
39.	Thermocouples (a)have very low speed of response (b)cannot be connected to the measuring instrument remotely located (c)need cold junction compensation (d)are much less accurate compared to bimetallic or vapour pressure thermometer
40.	Selection of material for thermocouple depend on the (a)depth of immersion in the hot fluid (b)minimum & maximum temperature (c)pressure & velocity condition of the fluid whose temperature is to be measured (d)both "a" and "b"
41.	Thermistor has (a)Negative temperature coefficient of resistance (b)Positive temperature coefficient of resistance (c)Null coefficient of resistance (d)None of these
42.	Surface temperature can be measured with (a) Thermocouple (c) RTD (b) Strain gauge (d) Diaphragm
43.	Resistance of Thermistor depends on (a) Temperature (c) Current (b) Voltage (d) None of these

44.	Therm (a)	ocouples are genera 350º C (b) 550º		for accu 3500°0		nperatu (d)	re of 1400°C					
45.		mal conductivity gau	` '			` '		n account of				
	(a)	radiation	.gee		(c)	conve						
	(b)	conduction			(d)		of these					
46.	Identif	y the thermocouple t	ype with	the high	nest tem	peratur	e limit					
	(a)	S type (b) J typ		(c)	K type		T type					
47.	The ne	egative lead of therm	ocouple	is alway	s colou	red						
	(a)	Blue (b) yello	ow (c)	red	(d)	white						
48.	A The	rmowell is a										
	(a)	heat sink										
	(b)	protective tube for a	-	ature se	nsing e	lement						
	(c)	temperature sensin										
	(d)	safety relief device	for high p	oressure)							
49.		netallic conductor ha		_ (
	(a) (b)	NTC of resistance PTC of resistance	(c)zer (d)		temperature coefficient of resistance None of these							
	(D)	FIC of resistance	(u)	None	oi tiiese	;						
50.		kine scale the freezir				0-						
	(a)	491°R (b)671°R	(c)	459°R	(d)	471ºR						
51.	Liquid	filled thermometer w	ork on th	•	•							
	(a)	Thermal condition		(c)		al expar						
	(b)	Change in pressure	9	(d)	none o	of these						
52.		eezing and boiling po	oint of wa	ter are								
	(a)	Centigrade scale			(c)	both a						
	(b)	Fahrenheit scale			(d)	none o	of these					
53.	The m	ost common used ga	as in vapo	our pres	sure the	ermome	eter is					
	(a)	helium (b) Nitro	gen	(c)	Hydro	gen	(d)Oxygen					
54.		directly	converts	temper	ature in	to volta	ge.					
	(a)	Thermocouple		(c)	Gear t	rain						
	(b)	Potentiometer		(d)	LVDT							
55.		of the following is th	e output									
	(a)	Alternating current		(c)	AC Vo							
	(b)	Direct current		(d)	DC Vo	ltage						
56.		istor is a contraction										
	(a)	thermal resistor		(-1)	(c)		c resistor					
E7	(b)	laser resistor		(d)	mecna	anical re	esistor					
57.	(a)	iostats have Positive temperatui	ra coeffici	iont								
	(a) (b)	Negative temperatu										
	(c)	Zero temperature o										
	(d)	Infinite temperature										
58.	Therm	ostats										
	(a)	sense large change										
	(b)	cannot sense any o	•	•								
	(c)	have a positive tem resistance sense si				turo						
	(d)	16313101106 361136 31	nan unan	iyes iii l	cinhaig	iui C						

Therm (a) (b)	istor has a resistance 250Ω to $500~\text{k}\Omega$ $50~\text{k}\Omega$	e of	(d)	(c) 1 Ω to 1 k Ω 100 Ω to 100 k Ω					
. ,	· ·		(c) (d)						
Therm (a)	istor follows which la Charles's law(b)	w for sm kvl	all varia (c)	tions_ kcl	(d)ohm	ıs's law			
-				Displa	cement	(d)Voltad	ae		
	` ,	ometer, v		liquid can be used for measuring temperature upto 6 (c) Ammeter Thermometer					
(a) (b) In elec	Seeback effect Peltier effect tric resistance therm	ometer, t	(d) he therr	(c) None o mocoup	Thoms of these le prope	on effect			
 (b) resistance of a metal wire (c) voltage between two extreme end points of a metal wire (d) none of these 									
Which (a) (b)	of the following is ch gas thermocouple	osen as	a standa (d)	(c)	Electri				
		terial or a	a body v	vhich is	taken a	ıs an indid	cation of cha	ange in tem	perature is
(a) (b)	Thermodynamics pr		(c) (d)						
r :- <u>TEN</u>	MPERATURE MEAS	UREMEI	<u>NT</u>						
A A A D A C B a	2- B 8- C 14- D 20- B 26- C 32- D 38- B 44-d 50-a 56-a	3- B 9- C 15- B 21- A 27- B 33- A 39- C 45-d 51-c 57-b		4- A 10- C 16- C 22- C 28- D 34- A 40- B 46-a 52-c 58-c		5- A 11- B 17- A 23- B 29- C 35- C 41-a 47-c 53-b 59-d	24- B 30- C) ;	
	(a) (b) Therm (a) (b) Therm (a) (c) (d) Therm (a) In (a) (d) In (a) (d) In (a) (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f	(a) 250Ω to 500 kΩ (b) 50 Ω to 10 kΩ Thermistor material is press (a) under zero pressure (b) under low pressure (b) under low pressure Thermistor follows which la (a) Charles's law (b) Output of a bimetallic eleme (a) Strain (b) Press In liquid in steel bulb thermo (a) Mercury (b) Bourdon tube The thermocouple circuit where the electric resistance thermo (a) electric current pass (b) resistance of a metallic element to the electric current pass (c) voltage between two electric current pass (d) none of these Which of the following is cheated to the electric propert (a) gas (b) thermocouple The characteristics of a marknown as (a) Thermodynamics propert (b) thermostatic propert (c) Pass (d) Thermodynamics propert (e) The characteristics of a marknown as (f) Thermodynamics propert (g) The characteristics of a marknown as (g) Thermodynamics propert (h) The characteristics of a marknown as (h) Thermodynamics propert (h) The characteristics of a marknown as (h) Thermodynamics propert (h) The characteristics of a marknown as (h) Thermodynamics propert (h) The characteristics of a marknown as (h) Thermodynamics propert (h) The characteristics of a marknown as (h) Thermodynamics propert (h) The characteristics of a marknown as (h) Thermodynamics propert (h) The characteristics of a marknown as (h) Thermodynamics propert (h) The characteristics of a marknown as (h) Thermodynamics propert (h) The characteristics of a marknown as (h) Thermodynamics propert (h) The characteristics of a marknown as (h) Thermodynamics propert (h) The characteristics of a marknown as (h) Thermodynamics propert (h) The characteristics of a marknown as (h) Thermodynamics propert (h) The characteristics of a marknown as (h) Thermodynamics propert (h) The characteristics of a marknown as (h) Thermodynamics propert (h) The characteristics of a marknown as (h) Thermodynamics propert (h) The characteristics of a marknown as (h) Thermodynamics propert (h) The characteristics of a marknown as (h) Thermodynamics propert (h) The characteristics of	(b) 50 Ω to 10 kΩ Thermistor material is pressed (a) under zero pressure (b) under low pressure (c) under low pressure Thermistor follows which law for smale (a) Charles's law (b) kvl Output of a bimetallic element will be (a) Strain (b) Pressure In liquid in steel bulb thermometer, v (a) Mercury (b) Bourdon tube The thermocouple circuit which is us (a) Seeback effect (b) Peltier effect In electric resistance thermometer, t (a) electric current passing through the second of the secon	(a) 250Ω to 500 k Ω (b) 50 Ω to 10 k Ω (d) Thermistor material is pressed (a) under zero pressure (c) (b) under low pressure (d) Thermistor follows which law for small varia (a) Charles's law (b) kvl (c) Output of a bimetallic element will be- (a) Strain (b) Pressure (c) In liquid in steel bulb thermometer, which lic (a) Mercury (b) Bourdon tube (d) The thermocouple circuit which is used to m (a) Seeback effect (b) Peltier effect (d) In electric resistance thermometer, the them (a) electric current passing through a m (b) resistance of a metal wire (c) voltage between two extreme end production of these Which of the following is chosen as a stand (a) gas (b) thermocouple (d) The characteristics of a material or a body who was (a) Thermodynamics property (c) (b) thermostatic property (d) The characteristics of a material or a body who was (a) Thermodynamics property (d) The characteristics of a material or a body who was (a) Thermodynamics property (d) The characteristics of a material or a body who was (a) Thermodynamics property (d) The characteristics of a material or a body who was (a) Thermodynamics property (d) The characteristics of a material or a body who was (a) Thermodynamics property (d) The characteristics of a material or a body who was (a) Thermodynamics property (d) The characteristics of a material or a body who was (a) Thermodynamics property (d)	(a) 250Ω to 500 k Ω (b) 50Ω to 10 k Ω (d) 100Ω Thermistor material is pressed (a) under zero pressure (c) under (b) under low pressure (d) under Thermistor follows which law for small variations (a) Charles's law (b) kvl (c) kcl Charles's law (b) kvl (c) kcl Output of a bimetallic element will be- (a) Strain (b) Pressure (c) Displace In liquid in steel bulb thermometer, which liquid cand (a) Mercury (c) (b) Bourdon tube (d) Thermometer (e) Seeback effect (c) (e) Peltier effect (d) None (e) Peltier effect (d) None (e) In electric resistance thermometer, the thermocoup (a) electric current passing through a metal wine (c) voltage between two extreme end points of (d) none of these Which of the following is chosen as a standard them (a) gas (c) (b) thermocouple (d) mercu (b) thermocouple (d) mercu (c) The characteristics of a material or a body which is known as (a) Thermodynamics property (c) Thermodynamics property (d) None (e) Thermodynamics property (e) Thermodynamics property (f) Thermodynamics property (g) Thermodynamics (f)	(a) 250Ω to 500 k Ω (b) 50 Ω to 10 k Ω (d) 100 Ω to 100 d	(a) 250Ω to 500 k Ω (b) 50 Ω to 10 k Ω (d) 100 Ω to 100 k Ω Thermistor material is pressed (a) under zero pressure (c) under high pressure (b) under low pressure (d) under low volume Thermistor follows which law for small variations_ (a) Charles's law (b) kvl (c) kcl (d)ohms's law Output of a bimetallic element will be- (a) Strain (b) Pressure (c) Displacement (d)Voltage in liquid in steel bulb thermometer, which liquid can be used for measure (a) Mercury (c) Ammeter (b) Bourdon tube (d) Thermometer The thermocouple circuit which is used to measure temperature work (a) Seeback effect (c) Thomson effect (b) Peltier effect (d) None of these In electric resistance thermometer, the thermocouple property is (a) electric current passing through a metal wire (b) resistance of a metal wire (c) voltage between two extreme end points of a metal wire (d) none of these Which of the following is chosen as a standard thermometric substate (a) gas (c) Electric resistance (d) mercury The characteristics of a material or a body which is taken as an indicknown as (a) Thermodynamics property (d) mercury The characteristics of a material or a body which is taken as an indicknown as (a) Thermodynamics property (d) None of the above T:-TEMPERATURE MEASUREMENT C 2-B 3-B 4-A 5-A 4-A 5-A 8-C 9-C 10-C 11-B 10-	(a) 250Ω to 500 kΩ (c) 1 Ω to 1 kΩ (b) 50 Ω to 10 kΩ (d) 100 Ω to 100 kΩ Thermistor material is pressed (a) under zero pressure (c) under high pressure (b) under low pressure (d) under low volume Thermistor follows which law for small variations_(a) (a) Charles's law (b) kvl (c) kcl (d)ohms's law Output of a bimetallic element will be-(a) (a) Strain (b) Pressure (c) Displacement (d)Voltage In liquid in steel bulb thermometer, which liquid can be used for measuring temptors (c) (a) Ammeter (b) Bourdon tube (d) Thermometer The thermocouple circuit which is used to measure temperature works on-(a) Seeback effect (c) Thomson effect (b) Peltier effect (d) None of these In electric current passing through a metal wire (b) resistance of a metal wire (c) pelectric current passing through a metal wire (d) none of these Which of the following is chosen as a standard thermometric substance? <tr< td=""><td>(a) 250Ω to 500 kΩ (d) 100 Ω to 100 kΩ Thermistor material is pressed (a) under zero pressure (c) under high pressure (b) under low pressure (d) under low volume Thermistor follows which law for small variations_ (a) Charles's law (b) kvl (c) kcl (d)ohms's law Output of a bimetallic element will be- (a) Strain (b) Pressure (c) Displacement (d)Voltage In liquid in steel bulb thermometer, which liquid can be used for measuring temperature upi (a) Mercury (c) Ammeter (b) Bourdon tube (d) Thermometer The thermocouple circuit which is used to measure temperature works on- (a) Seeback effect (c) Thomson effect (b) Peltier effect (d) None of these In electric resistance thermometer, the thermocouple property is (a) electric current passing through a metal wire (b) resistance of a metal wire (c) voltage between two extreme end points of a metal wire (d) none of these Which of the following is chosen as a standard thermometric substance? (a) gas (c) Electric resistance (b) thermocouple (d) mercury The characteristics of a material or a body which is taken as an indication of change in tem known as (a) Thermodynamics property (c) Thermometric property (b) thermostatic property (d) None of the above T:-TEMPERATURE MEASUREMENT C 2-B 3-B 4-A 5-A 6-B A 8-C 9-C 10-C 11-B 12-D A 14-D 15-B 16-C 17-A 18-D D 20-B 21-A 22-C 23-B 24-B A 8-C 9-C 10-C 11-B 12-D A 14-D 15-B 16-C 17-A 18-D D 20-B 21-A 22-C 23-B 24-B A 26-C 27-B 28-D 29-C 30-C C 32-D 33-A 34-A 35-C 36-B B 38-B 39-C 40-B 41-a 42-C B 44-d 45-d 46-a 47-C 48-b B 50-a 51-c 52-c 53-b 54-a</td></tr<>	(a) 250Ω to 500 kΩ (d) 100 Ω to 100 kΩ Thermistor material is pressed (a) under zero pressure (c) under high pressure (b) under low pressure (d) under low volume Thermistor follows which law for small variations_ (a) Charles's law (b) kvl (c) kcl (d)ohms's law Output of a bimetallic element will be- (a) Strain (b) Pressure (c) Displacement (d)Voltage In liquid in steel bulb thermometer, which liquid can be used for measuring temperature upi (a) Mercury (c) Ammeter (b) Bourdon tube (d) Thermometer The thermocouple circuit which is used to measure temperature works on- (a) Seeback effect (c) Thomson effect (b) Peltier effect (d) None of these In electric resistance thermometer, the thermocouple property is (a) electric current passing through a metal wire (b) resistance of a metal wire (c) voltage between two extreme end points of a metal wire (d) none of these Which of the following is chosen as a standard thermometric substance? (a) gas (c) Electric resistance (b) thermocouple (d) mercury The characteristics of a material or a body which is taken as an indication of change in tem known as (a) Thermodynamics property (c) Thermometric property (b) thermostatic property (d) None of the above T:-TEMPERATURE MEASUREMENT C 2-B 3-B 4-A 5-A 6-B A 8-C 9-C 10-C 11-B 12-D A 14-D 15-B 16-C 17-A 18-D D 20-B 21-A 22-C 23-B 24-B A 8-C 9-C 10-C 11-B 12-D A 14-D 15-B 16-C 17-A 18-D D 20-B 21-A 22-C 23-B 24-B A 26-C 27-B 28-D 29-C 30-C C 32-D 33-A 34-A 35-C 36-B B 38-B 39-C 40-B 41-a 42-C B 44-d 45-d 46-a 47-C 48-b B 50-a 51-c 52-c 53-b 54-a

RECORDERS

	(a) (b)	agnetic tape Storage Visualising	I				(c) (d)		of these	
2.	How m (a)	nany variabl 2	es can be (b)				pe with 256	track n	umber (d)	16? 65536
3.	Magne	etic tape car Analog dat Digital Dat	n be used t ta					nalog & of these	digital	data
4.		of the follow	wing classo gnetic syst	em		belong (c)		nical sy		
5.		of the follow			lowed b		f digital	signal?		10⁵
6.	(a) Data re (a) (b)	10 ecorders ac Transduce Sensors		from		(c) Both tr (d)	ansduc None o			10
7			wina devic	e can he	a usad f					f two variables?
7.	(a)	PMMC dev	vices	e can be		(c)	X-Y Pla ar record	otter	errierit O	two variables:
8.	(b) How m (a)	Pen record nany graphic Five (b)	c recorders	s are the			(d)	One		
9.	(a)	der is a Measuring	instrumer	nt	(c)		ıt divide			
10.		Voltage soncy of a rec paper chart		etermine	d using		voltme oscillos	ter		
11.	(a)biol	rip chart red ogical quan mical quant	tity is mea	sured			antity is is meas		ıred	
12.	Basic (a) (b)	elements of chalk & bo pen & pen	ard	art recor	der are (c) (d)	pencil	 & paper chart pa			
13.	How m (a)	nany types o two	of tracing s (b)	systems five	are use	d in gra	phical r ten	eprese	ntation? (d)	one
14.	A Galv (a) (b)	ranometer b Van der wa D'Arsonva	all's effect		rks on tl (c) (d)	Pasche	en effec		number	
15.	Which (a) (b)	of the follow Strip chart Galvanom	recorders		known (c) (d)	potenti	recorde ometric the abo	record	ers	
16.	The po	tentiometri High sensi		s have						

	(b)	High sensitivity & independer Low sensitivity	nce of le	ead len	gth
	(d)	none of these			
17.		hart recorder can be recorded	bv		
	(a)	pen& ink stylus	~ /	(c)ther	mal, electrical ,optical wiring
	(b)	impact printing	(d)all c	of the ab	•
	(2)	past printing	(4)4	i ti io at	
18.		order is an instrument used fo	r	()	
	(a)	recording		(c)	display
40	(b)	indicating		(d)	measurement
19.		type recorder uses			
	(a)	amplifier		(c)	capacitor
	(b)	inductor		(d)	potentiometer
20.		anometer type recorder has			
	(a)	very high input impedance	(c)	•	out impedance
	(b)	high input impedance	(d)	very lo	w input impedance
0.4					
21.		lar recorder uses		()	
	(/	rectilinear chart		(c)	square chart
	` '	curvilinear chart		(d)	circular chart
22.		lar chart uses principle of			
	(a)	electrostatic	(c)		ometer
	(b)	mechanical & link levers	(d)	self ba	lancing potentiometer
23.		ecorder uses the principle of			
	(a)		(c)	electro	
	(b)	mechanical levers		(d)	self balancing potentiometer
24.	An X-Y	Plotter uses			
	(a)			(c)	a double pen
		a single pen/ar mechanism	(d)a do		en/arm mechanism
25.		chart recorder uses	(-,		
	•	a long roll of paper	(c)	a statio	onary paper
	(b)	a circular paper	(-)	(d)	none of these
	()			()	
26.	X-Y Re	ecorder is the type of			
		graphic recorders		(c)	magnetic tape recorders
	(b)	Oscillographic recorders	(d)		recorders
27.	` '	s the purpose to use recorder	` '	J	
		see the event			
	(b)To	control the process			
	(c)To p	provide the answer of question	which	may co	me up at later time
		naintain the process variable		•	•
28.		ic recorders is a device which		·	
	•	observation of process			
	` '	w the event and trouble of a p	rocess		
	` '	olay and store by pen and ink t		d the hi	story of physical event
		of the above			, , ,
29.		pen moves in circular chart re	corder	?	
	(a)	V-pen		(c)	both a and b
	(b)	Fountain pen	(d)	` '	of these
	. ,	·	` '		
30.	A spec	cial form of circular chart recor	der is k	nown a	s;
	(a)	Temperature receiver	(c)	Flow re	eceiver
	(b)	Pressure receiver	-	(d)	None of these
31.	X-Y Re	ecorder used of graphic record	ding of		
		ariable at a time	(c)	both a	and b
	(b)rela	tionship between 2 variables	(d)	none c	of these

What is the working of chopper in X-Y Recorder? 32.

(c)to amplify the signal

(a)convert AC signal to DC (b)Convert DC signal to AC (d)all of these

In X-Y Recorder servo motor is used to 33.

balance the system (a)

(b) for moving the chart towards X direction (c) for moving the chart towards Y direction

(d)both b and c

Answers: **RECORDERS**

1- a	2- b	3- c	4- a	5- d	6- c	7- c
8- c	9- a	10- b	11- c	12-d	13- a	14- b
15- с	16- b	17- a	18- a	19- d	20- с	21-d
22- d	23- d	24- b	25-a	26-a	27-c	28-c
29-c	30-b	31-b	32-h	33-a		

FINAL CONTROL ELEMENTS

1.	Final	control element is a			
	(a)	Valve		(c)	Signal
_	(b)	Switch	(d)	Both a	
2.		n of the following is not a final o	ontrol e		
	(a)	A Pressure transmitter		(c)	A Heating element
	(b)	An electric motor		(d)	A Control valve
3.		is not a final control eleme	ent.		
•	(a)	Control Valve	(c)	Electro	-pneumatic converter
	(b)	Potentiometer	(d)	Servor	•
			_		
4.		is the function of a butterfly val		_	
	(a)	On/Off Control	(c)		ire control
	(b)	Flow regulation		(d)	Hydraulic control
5.	Which	n of the following is better for o	n/off co	ntrol?	
0.	(a)	Ball Valve	# OH OO	(c)	Plug valve
	(b)	Butterfly valve	(d)	Knife v	
	()		()		
6.	Which	n of the following valves are use	ed in hi	gh duty	cycle applications?
	(a)	Check valve		(c)	Ceramic disc valve
	(b)	Clapper valve	(d)	Choke	valve
7.	Chacl	k valve is also called as			
٠.	(a)	Non-return valve		(c)	Knife valve
	(a) (b)	Gate valve		(d)	Choke valve
	(D)	Gate valve		(u)	Choke valve
8.	What	is the purpose of piston valve?)		
	(a)	Regulate fluids			
	(b)	Regulate fluids carrying susp	ended	solids	
	(c)	Regulates flow			
	(d)	Regulates Pressure			
0	\\/hat	is the other name for the plug	volvo?		
9.		is the other name for the plug Needle valve		Donno	tvalvo
	(a) (b)		(c)	Poppe (d)	Spool valve
	(D)	Siiiii vaive		(u)	Spool valve
10.	What	is the purpose of Pinch valve?			
	(a)	Hydraulic control		(c)	Flow control
	(b)	Slurry flow regulation	(d)	regulat	e fluids
11.	_	be valves, the flow rate contro			
	(a)	size of the opening	(c)		re difference
	(b)	Lift of the valve plug	(d)	Gravity	
12.			h of the	followir	ng are used to control the flow of liquid in a single
	direct				
	(a)	Butterfly valve	(c)	Check	
	(b)	Ball valve		(d)	Plug valve
13.	\//high	n of these are used as throttling	ı valvas	.2	
١٥.	(a)	Butterfly valve	(c)	Gate v	alve
	(b)	Check valve	(0)	(d)	Sluice valve
	(-)			\ - /	

14.	Which (a) (b)	valve is used when a straight Gate valve Lift check valve	line of	fluid an (c) (d)	d minimum restriction is required ? Butterfly valve Plug valve
15.	Which (a) (b)	valve is most commonly used Globe valve Gate valve	l in hou	sehold ((c) (d)	applications? Butterfly valve Check valve
16.	Which (a) (b)	of these are usually not prefe Ball valve Plug valve	rred for	frequer (c) (d)	nt operation? Gate valve Butterfly valve
17.	Which (a) (b)	type of valve is preferred for valve Diaphragm valve Butterfly valve	/acuum	applica (c) (d)	ations? Globe Valve Sluice Valve
18.		valve can be used in the serv ottling as well? Butterfly valve Gate valve	ice to h (c)	andle fl Plug v (d)	uids and gases and at the same time can be used alve Diaphragm valve
19.	Which (a) (b)	of the following is known as s Air relief valve Sluice valve	hut off (c)		ure relief valve Altitude valve
20.	Which (a) (b)	of the following is used to sto Air relief valve Sluice valve	p the w		oplies when required? ure relief valve Altitude valve
21.	The ga (a) (b)	ate valves are made of Cement concrete reinforced concrete	(d)	(c)	ass mountings. Cast Iron ized iron
22.	(a) (b)	valves are used to dis Air relief valve Sluice valve	(c)		ure relief valve
23.	Which (a) (b)	valve allows water to flow in o Air relief valve Sluice valve	one dire (c)	ection or Reflux (d)	
24.	Which (a) (b)	of the following valve is know Scour valve Pressure relief valve	n as sa (d)	(c)	ve? Reflux valve e valve
25.	(a) (b)	valves are used to re Air relief valve Sluice valve	emove s (c)	sand an Scour (d)	d slit from the pipelines. valve Altitude valve
26.		a control valve is installed in a st trim characteristic to choose Ported Quick -opening		e valve v	where the difference pressure drop increasing flow would be: percentage Linear
27.				be form	ed with which of these actuator/valve body:

28.	(b) (c) (d) The m (a) (b) (c) (d)	direct acting actuator, direct acting valve body direct acting actuator, reverse acting valve body Both a and c main purpose of a valve positioned is to: Alter the fall-safe status of the valve Improve the precision of the valve Alter the characterization of the valve Increase the transmitter accuracy						
29.	The p (a) (b) (c) (d)	urpose of a valve packing to a Help to reduce cavitation in increase stiction Seal process fluid from escan Lubricate the valve trim	the valv		tem			
30.	Cavita (a) (b)	ation in a control valve is caus Process noise vibration in the piping	sed by : (c) (d)		nar flow regime ure recovery	Э		
31.	Which (a) (b)	of the following valves is bet Ball valve butterfly valve	ter for o	n/off co (c) Knife	Plug valve			
32.	(a) (b)	is the purpose of pinch valve Hydraulic control Slurry flow regulation	? (d)	(c) Regul	Flow control ate fluids			
33.	Actua (a) (b)	tor converts Force into motion Motion into pressure	(d)	(c) None	Motion into fo of these	orce		
34. 35.	(a)	many type of actuators accord 5 (b) 2 is a device. Electrical	ding to th (c)	ne action 4 (c)	n? (d) Electromecha	3 anical		
	(b)	Mechanical		(d)	Electronics			
36.	Which (a) (b)	a actuator gives linear and rot Cylindrical actuator Rotary actuator	ational c (c)		y? Actuator All of these			
37.	AFR s (a) (b)	stands for ; Air flow regulator Air filter regulator	(d)	(c) none	Air flow regist of these	ter		
38.	Which (a) (b)	n is not a controlling element? Actuator Valve		(c) (d)	Pneumatic Ad Cascade	ctuator		
39. 40.	(a)	many types of Transmitters? 5 (b) 4 communicator is used for;		(c)	3	(d)	2	
-	(a) (b)	Smart transmitter Conventional transmitter	(d)	(c) none	Both a and b of these			
41.	(a) (b)	actuator takes the er Hydraulic actuator Pneumatic actuator	nergy to (c) (d)	Electr	into motion by ical actuator of these	air pre	ssure.	

42.		actuator powere	d by a moto		convert mechanical energy into torque	€.
	(a)	hydraulic actuator	(c)		rical actuator	
	(b)	Pneumatic actuator	(d)	none	of these	
43.		actuator is not involve in				
	(a)	Hydraulic actuator	(c)		rical actuator	
	(b)	Pneumatic actuator	(d)	none	of these	
44.					o a pneumatic actuator.	
	(a)	Hydraulic actuator	(c)	Posit		
	(b)	Pneumatic actuator	(d)	•	drical actuator	
45.	Positi	oner is used in the range	of	to	control the pressure.	
	(a)	3 to 5 psi		(c)	4 to 20 ma	
	(b)	1 to 12 psi		(d)	1 to 16 ma	
46.		is an electromed	hanically op			
	(a)	Solenoid valve	(c)	Port '	valve	
	(b)	Pilot valve		(d)	Check valve	
47.	Which	n of the following logic val	ve is known	as shu	ittle valve?	
	(a)	OR gate		(c)	NOR gate	
	(b)	AND gate		(d)	NAND gate	
48.	In a p	neumatic system ,AND ga	ate is also k	nown a	s	
	(a)	Check valve		(c)	Dual pressure valve	
	(b)	Shuttle valve	(d)	none	of these	
49.	(a)It is (b)It is (c)It is (d)It is	s a combination of nonadj s a combination of adjusta s a combination of adjusta	able pressur ustable pres able pressur able pressur	ssure re	valve & direction control valve elief valve and directional control valve sing valve and check valve sing valve and flow control valve	
50.		Way single solenoid valve		Enor	to E positions	
	(a)	2 ports 2 positions	(c)	•	ts 5 positions	
	(b)	5 ports and 2 positions		(d)	2 ports and 5 positions	
51.	A	restricts air fl		Direc	tion control valva	
	(a)	Throttle valve Shuttle valve	(c)		tion control valve	
F O	(b)		(d)	_	e acting cylinder	
52.		er is pressed by the sprin		nected	to the atmosphere the piston os the si	ngie acting
	(a)	Cylinder center		(c)	Cylinder bottom	
	(b)	Cylinder down	(d)	Cylin	der upper	
53.	Rega (a)	rdless of type, all valves h Bonnet(b) Nipple (d		_	pasic parts , with the exception of (d) Body	
54.	joints	except:	ceives inlet		tlet piping through any of the following	types of
	(a)	Glued		(c)	Threaded	
	(b)	Welded		(d)	Bolted	
55.	The ir	nternal elements of a valv		-	eferred to as a valve's	
	(a)	Guts (b) trim (d	c) Works	s (d)	packings	
56.		-	not usually	consid	ered to be a part of the pressure bound	dary?
	(a)	body		(c)	bonnet	
	(b)	seal rings		(d)	disk	

57.	Most v (a) (b)	alves use o-rings a liquid seal	to p	revent le (c)		from the s I to metal packing	space between th seal	ne stem and th	e bonnet.
58.		al into or again: Globe and nee	st an orifice?		(c)		nent that involves plug valves valves	s moving a flex	cible
59.	Which (a) (b)	a) Ball valve			e the gre (c) (d)				
60.	Which (a) (b) (c) (d)	they are large They have hig they have rela	g is a disadvant and heavy. Ih maintenance Itively poor thro ng the most exp	e cost.	naracter	istics.	S.		
61.	The strengt (a) (b)		·	ısed dis	k within (c) (d)	a gate va split wed solid wed	•	its simplicity a	ind
62.	The gla	and of a plug valud body (b)pac	alve is equivale king (c)	ent to th seat	e (d)	bonnet	of a gate or globe	valve.	
Answe	rs:	FINAL CONT	ROL ELEMEN	TS					
1- a 8- b 15- a 22- a 29- c 36-b 43-b 50-b 57-c		2- a 9- b 16- c 23- c 30- d 37-b 44-c 51-a 58-c	3- b 10- b 17- a 24- b 31-a 38-d 45-a 52-a 59-b	4- b 11- b 18- c 25- c 32-b 39-d 46-a 53-b 60-c		5- a 12- c 19- b 26- c 33-a 40-a 47-a 54-b 61-c	6- c 13- a 20- b 27- d 34-d 41-b 48-c 55-b 62-a	7- a 14- a 21- v 28- b 35-b 42-c 49-a 56-c	

CONTROL SYSTEM

1.	In an ((a) (b) (c) (d)	Output is dependent on control input Only system parameters have affect on the control output						
2.		None of the above sen control system which of the Less expensive Recalibration is not required Construction is simple and metrors are caused by disturbation.	for main	ntaining	the required quality of the output			
3.	A cont (a) (b)	rol system in which the contro Closed loop system semi closed loop system	l action (c) (d)	open s	ehow dependent on the output is known as system of the above			
4.	In clos (a) (b)	ed loop control system , with p Decrease Increase	oositive	value o (c) (d)	of feedback gain the overall gain of the system will be unaffected any of the above			
5.	Which (a) (b)	of the following is an open loc Field controlled DC motor Ward Leonard control	op contr (c) (d)	rol syste Metad Strobo	yne			
6.	(a) (b)	has tendency to oscill Open loop system Closed loop system	ate. (d)	(c) Neithe	Both a and b r a nor b			
7.	A good (a) (b)	d control system has all the fol good stability (c) slow response (d)suff	good a	accurac	•			
8.	The in (a) (b)	itial response when tune outpo Transient response Error response	ut is not (c)		o input is called, nic response Either of the above			
9.	An aut (a) (b)	comatic toaster is a Open Closed	loop (d)	(c)	system. Partially closed the above			
10.	A close (a) (b)	ed loop system is distinguishe Servomechanism Feedback	d from	open lo (c) (d)	op system by which of the following? Output pattern input pattern			
11.	(a) (b)	is a closed loop system. Auto-pilot for an aircraft Direct current generator	(c) (d)	Car sta Electri	arter c switch			
12.	Which (a) (b) (c) (d)	of the following should be dor the gain of the system should the gain of the system should the number of poles to the lo the number of zeros to the lo	d be ded d be inc op trans	creased creased sfer fun	ction should be increased			

As a result of introduction of negative feedback which of the following will not decrease?

13.

	(a) (b)	Bandwidth Overall gain		(c) (d)	Distortion Instability
14.	The or (a) (b)	utput of a feedback control reference and output reference and input	system mu (c) (d)	input a	a function of and feedback signal and feedback signal
15.	A conf (a) (b) (c) (d)	trol system with excessive saturation in amplifying st loss or gain vibrations oscillations		kely to	suffer from
16.	Transf (a) (b)	fer function of a system is the order of the system the time constant	used to cal	culate v (c) (d)	vhich of the following? the output for any given input the steady state gain
17.		nich of the following factors isturbances depend? frequency loop gain	does the s	sensitivi (c) (d)	ty of a closed loop system to gain changes and forward gain all of the above
18.	In a co (a) (b)	ontrol system the output of Final control element Amplifier	the control (c)	ler is gi Comp (d)	
19.	A Con (a) (b)	troller ,essentially is a Sensor Clipper	(c) (d)	Comp Amplit	
20.	The or (a) (b)	n-off controller is a Digital Linear	syste (c) (d)	Non-li	near ntinuous
21.	(a) (b)	signal will become Input Actuating	zero wher	the fe (c) (d)	edback signal and reference signs are equal. Feedback Reference
22.	as: (a)	disturbance	input that	(c)	o affect the value of controlled variable is known control element
23.	(b) (a) (b)	command is the reference input Manipulated variable Zero sequence	t minus the (c)	•	reference input y feedback. ting signal Primary feedback
24.		eedback incre system stability sensitivity	eases.	(c) (d)	gain effects of disturbing signals
25.	With for (a) (b)	eedback system stability system gain	reduces.	(c) (d)	system stability and gain none of the above
26.	Autom (a)	natic control system in whic Closed loop system	h output is (c)		ble is called natic regulating system

	(b)	Servomechanism		(d)	Process control system
27.	A nega (a) (b)	ative gain margin expressed ir a stable system unstable system	decibe	els mear (c) (d)	ns critically damped system both "a" and "c"
28.		stability method uses open loop transfer function closed loop transfer function	(c) (d)	either a	a or b
29.	Routh (a) (b)	stability method uses open loop transfer function closed loop transfer function	(c) (d)	either a	a or b r a or b
30.	Which (a) (b)	of the following controllers ha P- controller P-I Controller	s maxin (c) (d)	P-D C	set ontroller Controller
31.	Proces (a) (b) (c)	ss degrees of freedom indicates the maximum numb indicates the minimum numb determines both maximum a	er of co	ntroller	
	(d)	gives no idea of controllers			
32.	Use of (a) (b)	I-controller along with P-Cont elimination of offset reduction of offset	rol facil (c) (d)		ion of stability time and c
33.	Casca (a)	de control means feed forward control	(c)	on-off	control
34.		more than one feedback loop of the following controller has P-Controller P-I Controller	the lea	st maxii P-I-D (
35.	Offset (a) (b)	varies with time varies exponentially with time	e(d)	(c) varies	does not vary with time as square of the time
36.	Regula (a) (b)	ator problem means set point is constant (c)both load is constant	•		load constant point nor load constant
37.	Phase (a) (b)	plane method is used for linear-behaviour non-linear behaviour	(d)	(c) neither	both a and b a and b
38.	Laplac (a) (b)	e transform method is used fo linear-behaviour non-linear behaviour	or (d)	(c) neither	both a and b r a and b
39.	P-I cor (a) (b)	ntroller as compared to P-cont higher maximum deviation longer response time	roller ha (c) (d)	longer	period of oscillation o , and c

40.	Differe	•	en the value		ntrolled variable and the set point is called				
	(a)	deviation		(c)	error ratio				
	(b)	derived time	(d)	differ	rential gap				
41.	The ti		e output oa	a P-D	controller leads the input changes linearly with time				
	(a) (b)	error ratio derivative time	(d)	(c) gain	proportional sensitivity				
42.	Stead (a)	y state deviation resulting offset	from a cha	nge in (c)	the value of the load variable is called deviation				
	(b)	error ratio		(d)	static ratio				
43.	variab	le and rate of change of c	controlled or	utput si	·				
	(a)	proportional action	(c)		ative action				
	(b)	integral action	(d)Pro	portioi	nal-derivative action				
44.	signal	is called	e of proporti		ontroller output variable and the change in actuating				
	(a) (b)	proportional sensitivity reset rate		(c) (d)	rangeability integral action				
45.	` '	f control		` ,	·				
	(a)				the measured variable is below the set point				
	 (b) fully closes the final control element when the measured variable is above the set point (c) is a two position control adequate to control a process with slow reaction rate and minimum 								
	(c) dead t	time or transfer lag	auequate it) COIIII	or a process with slow reaction rate and minimum				
	(d)	all a, b, c							
46.	It is th	e variable which is manin	ulated to m	ako the	e controlled variable at set point value.				
40.	(a)	Manipulated variable	(c)		rol variable				
	(b)	Process variable	(-)	(d)	None of these				
47.			nnection of	compo	onents forming system configuration that will provide				
		red system response.		(-)	Marshartones				
	(a)	Control system		(c)	Mechatronics				
	(b)	Automation		(d)	Instrumentation				
48.		eviation of controlled varia	able from th	•					
	(a)	Control lag		(c)	Error				
	(b)	Automation		(d)	Process lag				
49.		ol element.	or the proce	ss con	trol loop to make necessary adjustments to the fina				
	(a)	Control lag		(c)	Error				
	(b)	Automation	(d)	Proc	ess lag				
50.		is function wh			process and provides the information about other				
	(a)	Control system	ence ine co	(c)	Process equation				
	(b)	Automation		(d)	Instrumentation				
51.	. ,	rocal of proportional band	is called	()					
	(a)		ntage (c)gai	n (d)	Rate				
52.	Reset	control action in often exp	pressed in ι	unit of					
	(a)	second per rate		(c)	time constant ratio				
	(b)	minutes		(d)	repeat per minute				

53.	Integra	al control action output of non-zero value	equal to	o outpu	t of prop (c)	oortional cor error signa		on is		
	(b)	error free value			(d)	non-zero e				
54.	` '	notation represents the	e feedb	ack pat		sed loop sys	stem rep	resentation?		
	(a)	b(t) (b)	c(t)		(c)	e(t)	(d)	r(t)		
55.	How is (a)	an output represented r(t) (b)		control			(d)	v/t)		
56.	` '	r(t) (b) utput signal is feedback	c(t)	input si	(c) de from	x(t) the	` '	y(t) oint.		
00.	(a)	summing	at 110		(c)	Take-off	P	0		
	(b)	Differential			(d)	All of the al	bove			
57.		of the following is also	known							
	(a)	two term controller		(c)		rm controlle				
	(b)	three term controller		(d)	Propoi	tional contro	oller			
58.		of the following is a thr	ee mod							
	(a) (b)	PI controller PD controller		(c) (d)	ALL of	ntroller				
				(u)	ALL O	tricsc				
59.		s the full form of HART								
	(a)Highly addressable remote transducer									
	(b)highway addressable radio transducer (c)highway addressable remote transducer									
		n addressable radio tra								
60.	Which	controller has the pote	ntial to	elimina	te/over	come the dr	awback (of offset in pro	portional	
	control									
	(a)	P-I			(c)	Both a and				
C4	(b)	P-D	. :		(d)	none of the	ese			
61.	in P-10 (a)	controller ,what does ar Density of curve	ı integr	ai oi a i	(c)	volume ove	or the cui	rvo.		
	(b)	Area under the curve		(d)	. ,	of of the		, vc		
62.	A good	d control system should	l be ser	nsitive t	0					
02.	(a)	Internal disturbances	. 50 00.	(c)		etric variatio	ns			
	(b)	Environmental parame	eters		input s	ignals				
63.		eedback	_ reduc	es.		_				
	(a)	System stability			(c)	System sta		jain		
	(b)	System gain			(d)	none of the	ese			
64.		ditionally stable system	exhibit	s poor s	stability	at				
	(a)	Low frequencies	n loon	aoin						
	(b)	reduced values of ope increased value of ope	-	-						
	(d)	none of the above	сті юор	gairi						
65.		of feedback on the plar	nt is to							
	(a)	Control system transie								
	(b)	Reduce the sensitivity	to plan	nt paran	neter va	ariations				
	(c)	both a and b								
	(d)	none of these								
66.	(2)	has tendenc	y to oso	cillate.	(c)	both a and	h			
	(a) (b)	open loop system closed loop system		(d)	(c)	r a nor b	D			
67.		d control system has all	the fol	. ,						
	(a)	good stability	(c)	_	ccurac	-				
	(b)	slow response				ndling capa	city			

68.	A car is		constant	t speed	of 50 k	m/hr, w	which of the following is the feedback element	for		
	(a)	Clutch (b)	Eyes	(c)	needle	of the	speedometer			
	(d)	steering whee	-	(d)		of these				
	(-)	3.33g3		(-)						
69.	Autom	atic control sys	stem in v	which o	utput is	a varia	able is called			
	(a)	Closed loop s	ystem	(c)	Autom	atic reg	gulating system			
	(b)	Servomechan	ism		(d)	Proces	ess control system			
70	- .									
70.		ent response ir	•	stem is		•				
	(a)	(a) Forces (b)Friction (c) Stored energy (d)coupling								
71.	Effect	of feedback on	the pla	nt is to						
	(a)	Control syster			ponse					
	(b)									
	(c)	Both a and b								
70	(d)	none of these								
72.		er function of a			sed to s					
	(a) (b)	Steady state transient beha		ur	(d)	(c)	both a and b of these			
	(D)	transient bene	avioui		(u)	HOHE C	or triese			
73.	The ini	tial response v	vhen tur	ne outp	ut is not	t equal t	to input is called			
	(a)	Transient resp	oonse		(c)	Dynan	mic response			
	(b)	Error respons	е			(d)	Either of the above			
74	A cont	ral avatam war	kina un	dor unk	nown ro	andom (action is called			
74.	(a)	Computer cor					action is called pastic control system			
	(b)	Digital data sy			(d)		tive control system			
75.		omatic toaster								
	(a)	open (b)		(c)		ly close				
	(d)	any of the abo								
76.		•	•				olled output is called a			
77	(a)	Feedback	(b)	Stimul		(c)	Signal (d)gain control			
77.	(a)	Servomechan		าร ดเรแ	nguisne	(C)	open loop system by which of the following? output pattern			
		feedback	113111				input pattern			
	(5)	TOOGDACK				(4)	input pattorn			
78.		is a	part of t	he hum	nan tem	peratur	re control system.			
	(a)	digestive syst				(d)	ear			
	(b)	perspiration s	ystem		(d)	leg mo	ovement			
79.		is a	closed I	oon sy	stem					
75.	(a)	Auto pilot for a			(c)	car sta	arter			
	(b)	Direct current			(d)		ic switch			
80.			I action				n controlling , but rarely used when controlling			
	(a) (a)⊳⊔	Temperature	(4)	(b)	Flow, I		(a)Laval flaw			
	(c)p⊓ ,	temperature	(d)	Levei,	Tempe	rature	(e)Level, flow			
81.	Proces	s alwavs requi	ire some	e deare	e of cor	ntrol act	ction to achieve set point.			
		egrating, Deriva		(c)			g, proportional			
	(b)	Integrating, Fe	eed forv	vard(d)	runwa	y ,lineai	ar			
00	T .				. <i>.</i> .					
82.		ciprocal of prop					outoe per repeat			
	(a) (d)	Reset gain	(b) (e)	Percei rate	IIL	(C)IVIIN	nutes per repeat			
	(u)	gairi	(\mathbf{G})	iale						

83.	Fast, s	self regulating processe	es typica	ally respond well to a	aggressive	e control action.
	(a)	Non-linear	(b)	Derivative	(c)	Proportional
	(d)	reset	(e)	Gain		

Answers: CONTROL SYSTEM

1- a	2- b	3- a	4- a	5- a	6- b
7- b	8- a	9- a	10- b	11- a	12-b
13- a	14-a	15-a	16-c	17-d	18-a
19-c	20-d	21-b	22-a	23-c	24-a
25-b	26-d	27-b	28-a	29-b	30-a
31-a	32-a	33-b	34-d	35-c	36-a
37-a	38-a	39-d	40-a	41-b	42-a
43-a	44-a	45-c	46- a	47- a	48- c
49- a	50- с	51-c	52-d	53-a	54-a
55-b	56-c	57-b	58-c	59-c	60-a
61-b	62-d	63-b	64-b	65-c	66-b
67-b	68-c	69-d	70-c	71-c	72-c
73-a	74-c	75-a	76-b	77-b	78-b
79-a	80-a	81-e	82-d	83-d	

PROGRAMMABLE LOGIC CONTROLLER

1.		contacts are	e actuated,	, they dis	srupt the power supply						
	(a)		(c)		and b						
	(b)	normally closed type	(d)	none	of the above						
2.	(a)		of convention	(c)	same	to digital controllers?					
	(b)	very fast		(d)	almost similar						
3.	The ca	apability of conventional repoor than	elay systen	ns for co (c)	mplex operation is as good as	that of the PLCs.					
	(b)	•	(d)		dictable as						
4.	contro		_Cs to elec	trical no	se as compared to tha	t of conventional relay					
	(a) (b)	poor excellent									
	(c)	as good as noise immur unpredictable	nity of co	nventior	al relay controllers						
5.		of PLCs can be		•							
	(a) (b)	Programming Installation	(c)		nissioning All of the above						
6.		an be in p	lant to cha								
	(a) (b)	only programmed only reprogrammed	(d)		grammed & reprogram o give a set-point	mea					
7.		LC is used in									
	(a) (b)	machine tools automated assembly eq	uipments								
	(c) (d)	moulding and extrusion all of the above	machines								
8.		of the following cannot be									
	(a) (b)	manual switches Relays	(d)		Sensors of the above						
9.	The a	cronym PLC stands for:									
	(a)	(a) Pressure load control									
	(b)	Programmable logic con Pneumatic logic capstar									
	(d)	PID loop controller									
10.		er logic programming cons									
	(a) (b)	(a) Virtual relay contacts and coils (b) Logic gate symbols with connecting lines									
	(c) (d)	Function blocks with cor text-based code	nnecting lin	es							
11.			n the amou	nt of tim	e in which						
11.	(a) the	LC, the scan time refers to technician enter the proc	gram	וונ טו נוווו	e iii wilicii						
	(b)tim	ers and counters are inde	xed by								

(d)the entire program takes to execute 12. The difference between online and offline PLC programming is whether the PLC is running or stopped (a) whether the programming pc has internet connectivity (b) (c) the type of programming cable used (d) where the edited program resides In PLC programming, a retentive function is one that: 13. defaults to the On state (a) (b) defaults to the off state can not be edited or deleted (c) (d) is not reset after a power cycle 14. In OR function implemented in ladder logic uses: normally closed contacts in series (a) (b) normally open contacts in series normally open contacts in parallel (c) normally closed contacts in parallel (d) 15. A good application for a timed interrupt in a PLC program would be: a communications function block (a) a PID function block (b) (c) a math function block a motor start/stop rung (d) 16. Programming language of PLC is Function block diagram (C) Ladder (a) (b) statement list (d) All of the above 17. PLC's analog input/output has 1 bit address (c) 1 word address (a) (b) 1 byte address 1 double word address The PLC were originally designed to replace 18. Analog controllers Microcomputers (c) (a) (b) DCS (d) hardwired control 19. Which one of the following is not a PLC manufacturer? Siemens Microsoft (a) (c) (b) Mitsubishi (d) ABB 20. Solenoid, lamps, motors are connected to (a) Analog input (c) Digital input Digital output (b) Analog output (d) 21. PLC means _____ Logic controller. Programmable (c) Periodic (a) Peripheral (b) (d) None of these 22. Unitary PLC has 20 inputs and __ __ outputs. (b) 12 (c) (a) 20 10 (d) 23. PLCs having less than ___ inputs and outputs are called as small PLC. (b) 200 (c) 100 To protect a PLC from any incoming surges from the field, isolates devices such as 24.

(c)one rung of ladder logic takes to complete

are used.

					_					
	(a)	Transformer ADC	•	(c)	Trans					
	(b)	ADC			(d)	all of the abo	ve			
25.		land	guage can be g	enerated	d separa	ately and then	downloaded se	parately in the PC.		
	(a)	Online	,	(c)	Basic	,		, ,		
	(b)	Offline		(d)	None	of these				
26.	The _			used to	turn an	output on or of	ff after its timer	has been on for a		
		t time interval.								
	(a)	Retentive tin		(c)		off delay				
	(b)	Timer on de	lay		(d)	None of thes	е			
27.	What	is the first des	signing an effec	tive PLC	control	system				
	(a)		e system in a s			,				
	(b)		the process	•						
	(c)	define the co								
	(d)	define the co	ontrol strategy							
28.	Ladde	er logic progra	mming consists	s primari	lv of					
	(a)		contacts and c		.,					
	(b)	•	symbols with co		lines					
	(c)	0 0	ck with connec	_	•					
	(d)	text based c		. 3						
29.	. ,	C the scan tim	e refers to the	amount	of time i	n which				
	(a)	the technicia	an entered the p	orogram	me					
	(b)	timer and counter are indexed by								
	(c)	the entire pr	ogramme takes	s to exec	cute					
	(d)	transmitted (data communic	ation mu	ust finish	ned				
30.	An ex	ample of disci	rete(digital) con	trol is						
	(a)	Turning a la	mp ON or OFF							
	(b)	varying the v	volume of a mu	sic syste	em					
	(c)	varying the l	brightness of a	lamp						
	(d)	Controlling t	he speed of a fa	an						
Answe	ers: PLO	C								
1- b		2- a	3- a	4- a		5- d	6- c	7- d		
8- d		9- b	10- a	11- d		12-d	13-d	14-c		
15-b		16-d	17-c	18-d		19-c	20- d	21-a		
22-b		23- с	24- a	25- b		26- a	27-c	28-a		
29-с		30-a								

NETWORKING

1.	There	e are internet s	ervice pro	oviders.		
	(a) (b)	Regional Local		(c) (d)	National and international All of the above	
2.		refers to the physical or	logical a	rrangen	nents of a network.	
	(a)	Topology		(c)	Data flow	
	(b)	Mode of operation	(d)	none	of the above	
3.	Α	is a data commu	inication :	system	spanning states ,countries, or the whole world.	
	(a)	MAN (b) WA	١N	(C)LA	AN (d) None of these	
4.	Α	connection provide	s a dedic	ated lin	k between two devices.	
	(a)	Primary		(c)	Secondary	
	(b)	Multipoint		(d)	Point-to-point	
5.	Whic	h topology requires a multip	oint conn	ection?		
	(a)	Bus (b) Sta	r	(c)	Mesh (d) Ring	
6.	A	is a set of rules t	hat gove		communication.	
	(a)	Protocol	-	(c)	Standard	
	(b)	Forum	(d)	None	of these	
7.	In a _	connection, two	and only	two dev	ices are connected by a dedicated link.	
	(a) ⁻	Multipoint	•	(c)	a and b	
	(b)	Point-to-point	(d)	` '	of these	
8.	The i	nformation to be communicate	ated in a	data cor	mmunication system is the	
	(a)	Medium		(c)	Message	
	(b)	Protocol		(d)	Transmission	
9.	(-)		particular	` '	particular pattern to be interpreted and what action	วท
J.	is to	be taken based on that inter			· ·	
	(a)	Syntax	(c)	Timir	g	
	(b)	Semantics	, ,	(d)	None of these	
10.	Frequ	uency of failure and network	recovery	time af	ter a failure are measure of the	of
	a net	work.				
	(a)	Performance	(c)	Relia	bility	
	(b)	Security		(d)	Feasibility	
11.	A tele	evision broadcast is an exan	nple of		transmission.	
	(a)	half-duplex		(c)	full-duplex	
	(b)	simplex		(d)	automatic	
12.	Data	flow between two devices c	an occur	in a	way.	
	(a)	simplex		(c)	full duplex	
	(b)	half-duplex		(d)	all of the above	
13.		are special interes	t groups t	that quid	ckly test, evaluate and standardize new	
	techr	nologies.	•	•	•	
	(a)	standards organizations	(c)	Forur	ms	
	(b)	Regulatory agencies	(d)	All of	the above	
14.	Α	is a data comm	unication	system	within a building ,plant, or campus, or between	
		by buildings.		-		
	(a)	LAN		(c)	WAN	
	(b)	MAN		(d)	none of these	

15.	This v	vas the first ne	twork.								
	(a)	CSNET			(c)	ARPANET					
	(b)	NSFNET			(d)	ANSNET					
16.			anged in a		topo						
	(a)	Mesh			(c)	bus					
	(b)	ring			(d)	all of the abo	ve				
17.		is th	e protocol suite	e for the	current	internet.					
	(a)	UNIX			(c)	TCP/IP					
	(b)	NCP			(d)	ACM					
18.		is a	collection of ma	any sepa	arate ne	etworks.					
	(a)	An internet			(c)	A LAN					
	(b)	A WAN			(d)	None of these	е				
19.	In a _	C	onnection, thre	ee or mo	re devi	ces share a linl	Κ.				
	(a)	point to poin	t	(c)	a and						
	(b)	multipoint			(d)	None of these	е				
20.		nunication bety	ween a comput	ter and a	keybo	ard involves					
	(a)	simplex			(c)	full-duplex					
	(b)	half-duplex			(d)	automatic					
21.		Which topology requires a central controller or hub?									
	(a)	Mesh			(c)	Ring					
	(b)	Bus			(d)	Star					
22.	The	The is the physical path over which a message travels.									
	(a) _	Protocol	. , .		(c)	Medium					
	(b)	Signal		(d)	ÀlÍ of	these					
23.	An un	authorized use	er is a network		issue.						
	(a)	Security			(c)	Performance					
	(b)	Reliability			(d)	All of these					
24.	In a _		ransmission the	e channe	el capad	city is shared by	/ both comm	unicating	devices at		
	all tim				(0)	Full dupley					
	(a)	Simplex		(4)	(c)	Full-duplex					
	(b)	Half-duplex		(d)	Hall-S	simplex					
Answe	ers: NE	TWORKING									
1-d		2-a	3-b	4-d		5-a	6-a	7-b			
8-c		9-b	10-c	11-b		12-d	13-c	14-a			
15-c		16-d	17-c	18-a		19-b	20-a	21-d			
22-c		23-a	24-c								

DCS & SCADA

1.	What is the full form of SCADA? a) Supervisory Control and Document Acquisition b) Supervisory Control and Data Acquisition c) Supervisory Column and Data Assessment d) Supervisory Column and Data Assessment
2.	DCS is a a) Distributed Control System b) Data Control System c) Data Column System d) Distributed Column System
3.	What is SCADA? a) Software b) Process c) System d) Hardware
4.	The control in SCADA is a) Online control b) Direct control c) Supervisory control d) Automatic control
5.	When did the SCADA start? a) 1980s b) 1990s c) 1970s d) 1960s
6.	How many levels are present in a complex SCADA system? a) 3 – levels b) 5 – levels c) 4 – levels d) 6 – levels
7.	Which of the following is not the component of a SCADA system? a) Database server b) I/O system c) PLC controller d) Sparger controller
8.	Which of the following is the heart of a SCADA system? a) PLC b) HMI c) Alarm task d) I/O task
9.	Aconsists of high speed, unidirectional digital communication channel which is arranged as a closed loop or ring microcomputers are attached to the ring by ring interface units. a) shared bus system b) hierarchical system c)ring system d)all

10.	A Dynamic data exchangeis a program that can obtain from a DDE server. a) Bus b)Server c)network d)client
11.	Sensors & control relays can't generate/interpret protocol communication,is needed to provide an interface between the sensors & the SCADA network. a)remote terminal units b) human machine interface c) field instruments d) all
12.	combine communication paths to & from many RTUs into a single bit stream, usually using time division multiplexing or other such bit stream manipulation technique a)PLC b)HMI c)barriers d) multiplexers
13.	A central host computer server or servers called
14	consists of number of microcomputer / minicomputers are connected in a tree structure a)ring system b) hierarchical system c)shared bus system d)all
15.	A SCADA system will include a) networks b) HMI c) software d) all
16. time si	Inthe connected processors communicated over a common channel using haring, thus allowing attached computers to transmit information in short duration, high speed bursts. a)ring system b) hierarchical system c)shared bus system d)all
17.	A collection of standard custom software systems used to provide the SCADA central host & operato terminal application, support the communications system & monitor & control remotely located field data interface devices called as
18.	SCADA systems encompass the transfer of data between a central host computer & a no of & PLC& the central host & the operator terminal a)I/O module

	c) RTI	rocontroller Js or control cent	er						
19.	Before a) b) c) d)	fore planning an alarm system within the SCADA one should consider how operators will be notified of those alarms? what actions will occurs in response to those alarms what condition triggers the alarm all							
20.	control.					_ and			
	(a) (b)	data presentation DCS			(c) (d)	Microcontrolle None of these			
Answe	er : DCS	& SCADA							
1- b 8- d 15-d		2- a 9- c 16-c	3-b 10- d 17-d	4-c 11-a 18-c		5- d 12-d 19-d	6- c 13-b 20- a	7- d 14-b	

HYDRAULIC SYSTEM AND COMPONENTS

- 1. In hydraulic systems,
 - a. the mechanical energy is transferred to the oil and then converted into mechanical energy
 - b. the electrical energy is transferred to the oil and then converted into mechanical energy
 - c. the mechanical energy is transferred to the oil and converted into electrical energy
 - d. none of the above
- 2. Which of the following is used as a component in hydraulic power unit?
 - a. pressure gauge
 - b. filler gauge
 - c. valve
 - d. reservoir
- 3. Rotary motion in a hydraulic power unit is achieved by using
 - a. hydraulic cylinder
 - b. pneumatic cylinder
 - c. both hydraulic and pneumatic cylinder
 - d. none of the above
- 4. Accessories used in a hydraulic power unit adjust pressure and are used to generate flow and direction of the fluid.
 - a. True
 - b. False
- 5. Which of the following statements are true?
 - 1. Bell housing connects motor and pump
 - 2. Centrifugal pump is a non-positive displacement pump
 - 3. Centrifugal pumps allow the back flow of fluid from delivery side to the suction side of the pump
 - 4. The function of vent plug used in a reservoir is to flush out oil
 - a. 1, 2 and 4
 - b. 2. 3 and 4
 - c. 2 and 3
 - d. all the above
- 6. Which of the following is used as an accessory in hydraulic power unit?
 - a. pumps
 - b. valves
 - c. motor
 - d. reservoir
- 7. Which type of pump is used for lifting water from the ground surface to the top of the building?
 - a. centrifugal pump
 - b. turbine pump
 - c. submersible pump
 - d. all the above
- 8. Pumps used in hydraulic applications are
 - a. positive displacement pumps
 - b. variable displacement pumps
 - c. fixed displacement pumps
 - d. all the above
- 9. What is a positive displacement pump?
 - a. oil from suction side of the pump flows completely to the delivery side
 - b. volume of fluid discharged cannot return back to the suction side of the pump

10.	c. discharges fixed volume of fluid every cycle d. all the above While operating a positive displacement pump, a. the shut-off valve should be closed on delivery side b. the shut-off valve should be closed on suction side c. the shut-off valve should be opened on delivery side d. none of the above
11.	Positive displacement pump used in hydraulic systems have a. high viscosity of fluids b. low efficiency c. required volume of fluid cannot be discharged d. all the above
12.	Heavy lifting work is often accomplished by shifting fluids in big machines. The power system of such machines can be described as a) Reciprocating b) Pneumatic c) Hydraulic d) Hybrid
13.	The scientific principle that makes hydraulic systems possible is a) Pascal's principle b) Boyle's law c) Bernoulli's principle d) The fluid flow principle
14.	Pneumatic and other power systems can support three kinds of motion; they are a) Linear, reciprocating, and random motion b) Linear, flowing, and rotary motion c) Linear, zigzag, and spiral motion d) Linear, reciprocating, and rotary motion
15.	A one-way valve that lets air into the reservoir of a compressor, but doesn't let it out, is a a) Check valve b) Receiver valve c) Control valve d) Three way valve
16.	5/2 way single solenoid valve has: a) 2 ports 2 positions b) 5 ports 2 positions c) 5 ports 5 positions d) 2 ports 5 positions
17.	The converts the compressed air energy into mechanical energy in the form of linear movement in one direction only. a) Piston cylinders b) Double acting cylinders c) Single acting cylinders d) Hydraulic pumps
18.	A restricts air flow. a) Throttle valve b) Shuttle valve c) Directional control valve d) Single acting cylinder
19.	When the piston area of the cylinder is connected to the atmosphere, the piston of the single-acting cylinder is pressed by the spring to the a) Cylinder center b) Cylinder down

- c) Cylinder bottom
- d) Cylinder upper
- 20. Which fluid is used in hydraulic power systems?
 - a. water
 - b. oil
 - c. non-compressible fluid
 - d. all of the above
- 21. Pressure of 1 bar is equal to
 - a. 14.5 psi
 - b. 145 psi
 - c. 12.5 psi
 - d. 145 x 10⁻⁶ psi
- 22. What effect does overloading have on fluid power and electrical systems?
 - a. electrical components get damaged in electrical systems
 - b. fluid power system stops working without damaging the components
 - c. both a. and b.
 - d. none of the above
- 23. How is power transmitted in fluid power systems?
 - a. power is transmitted instantaneously
 - b. power is transmitted gradually
 - c. both a. and b.
 - d. none of the above
- 24. The resistance offered to the flow of fluid inside a piston develops into
 - a. pressure
 - b. force
 - c. stress
 - d. all of the above
- 25. At low pressures, liquids are
 - a. compressible
 - b. non-compressible
 - c. unpredictable
- 26. In hydraulic systems,
 - a. the mechanical energy is transferred to the oil and then converted into mechanical energy
 - b. the electrical energy is transferred to the oil and then converted into mechanical energy
 - c. the mechanical energy is transferred to the oil and converted into electrical energy
 - d. none of the above
- 27. Which of the following is used as a component in hydraulic power unit?
 - a. pressure gauge
 - b. filler gauge
 - c. valve
 - d. reservoir
- 28. Rotary motion in a hydraulic power unit is achieved by using
 - a. hydraulic cylinder
 - b. pneumatic cylinder
 - c. both hydraulic and pneumatic cylinder
 - d. none of the above
- 29. What is the relation between speed and flow rate for fixed displacement vane pump?
 - a. flow rate increases with increase in speed of rotor
 - b. flow rate decreases with increase in speed of rotor
 - c. flow rate is constant and does not change with change in speed
 - d. none of the above

a. linear motion b. rotary motion c. both a. and b. d. none of the above 31. What is the function of electric actuator? a. converts electrical energy into mechanical torque b. converts mechanical torque into electrical energy c. converts mechanical energy into mechanical torque d. none of the above 32. Which of the following is a hydraulic cylinder based on construction? a. single acting cylinder b. double acting cylinder c. welded design cylinder d. all of the above 33. Which energy is converted into mechanical energy by the hydraulic cylinders? a. hydrostatic energy b. hydrodynamic energy c. electrical energy d. none of the above 34. What is the advantage of using a single acting cylinder? a. high cost and reliable b. honing inside the inner surface of pump is not required c. piston seals are not required d. all of the above 35. What is the function of a flow control valve? a. flow control valve changes the direction of oil flow b. flow control valve can adjust the flow rate of hydraulic oil c. both a. and b. d. none of the above What does the numbers in 4/2 valve mean? 36. a. 4 positions and 2 ways b. 4 ways and 2 positions c. none of the above 37. Which type of solenoid has more chances of coil failure? a. AC solenoid b. DC solenoid c. both AC and DC solenoids d. none of the above Which stage in two stage direction control valve is solenoid operated? 38. a. main stage direction control valve b. pilot stage direction control valve c. both stages in two stage direction control are solenoid operated d. none of the above Which of the following is a gas charged accumulator? 39. a. bladder type b. spring loaded accumulator c. weighted accumulator d. all of the above 40. How is pressure of fluid under piston calculated in a weighted accumulator? a. pressure of fluid = (weight added / piston area) b. pressure of fluid = (piston area / weight added) c. pressure of fluid = (weight added / piston force) d. pressure of fluid = (piston force / weight added)

Which of the following gas is used in gas charged accumulator?

Which type of motion is transmitted by hydraulic actuators?

30.

41.

	a. oxygen b. nitrogen c. carbon dioxide d. all of the above
42.	Why is the pilot operated check valve used in clamping operation? a. to reduce leakage in spool valve b. to avoid decrease in pressure during clamping c. both a. and b. d. none of the above
43.	Leakage in rotary chucks can be compensated by a. flow control valve b. pilot operated check valve c. accumulator d. all of the above
44.	Which of the following systems generate more energy when used in industrial applications? a. hydraulic systems b. pneumatic systems c. both systems generate same energy d. cannot say
45.	Which type of compressor requires a reservoir for compressed air and why? a. rotary compressor to avoid pulsating effect b. reciprocating compressor to avoid pulsating effect c. both rotary and reciprocating compressors to avoid pulsating effect d. none of the above
46.	Which of the following factors is/are considered while selecting a compressor? a. type of oil filter required b. volumetric efficiency c. viscosity of the liquids used d. all of the above
47.	Which of the following is a component used in air generation system? a. pressure switch b. pressure gauge c. drier d. intercooler
48.	Which of the following notations is used to represent a regulator unit? a. 3.0 b. 0.3 c. 3 d. none of the above
49.	Which of the following logic valve is known as shuttle valve? a. OR gate b. AND gate c. NOR gate d. NAND
50.	In pneumatic systems, AND gate is also known as a. check valve

b. shuttle valve

51.	 c. dual pressure valve d. none of the above What is a pressure sequence valve? a. it is a combination of adjustable pressure relief valve and directional control valve b. it is a combination of nonadjustable pressure relief valve and directional control valve c. it is a combination of adjustable pressure reducing valve and check valve d. it is a combination of adjustable pressure reducing valve and flow control valve 									
52.	Overlapping of signals in pneumatic systems can be avoided by using a. rolling lever valve b. idle roller lever valve c. both a. and b. d. none of the above									
53.	Pneumatic a) 1 hp b) 1 to 2 h c) 2 to 3 h d) 4 to 5 h	р Э	sually do not	exceed:						
54.	a) Operate b) Use air- c) Have a	over-oil pow dedicated po	tral hydraulic ver units ower unit		ınit					
55.	d) Does not have dedicated power unit The lubricator in a pneumatic circuit is the: a) First element in line b) Second element in line c) Last element in line									
56. 57.	Which of the state	oes of filter r umetric effic	factors is/are required siency is a compon h	(d)	(c) All of t	Viscos hese	sity of the	liquids us		
58.	Which of the (a) 3.0	_	notations is (b) 0.3	used to r	eprese (c)	nt a reg 3		t? of these		
59.	(a) roll	ng of signals ing lever val roller lever		c system	(c)	e avoid both a of these	and b	ng		
60.	machines (a) Re	ng work is of can be desc ciprocating eumatic	ften accompli cribed as:	shed by	shifting Hydra (d)			chines. Th	ie power sys	stem of such
61.	(a) Pas	ific principle scal's Princi yle's principl	•	nydraulic	systen (c) (d)	Berno	ole is ulli's princ id flow pr	•		
62.	(a) Lin (b) Lin	ear, reciprodear, flowing	power system cating and ra and rotary m and spiral mo	ndom mo	•	ree kind	ls of moti	on, they a	re;	

63. Fluid power circuits use schematic drawings to: simplify component (a) Make it so only trained persons can understand the functions (b) (c) Make the drawing look impressive Make untrained person to understand (d) 64. A pneumatic symbol is: (a)Different from a hydraulic symbol used for the same function (b)The same as a hydraulic symbol used for the same function (c)Not to be compared to a hydraulic symbol used for the same function (d)None of the mentioned 65. A pneumatic system usually do not exceed: 1 hp 1 to 2 hp (c)2 to 3 hp 4 to 5 hp (a) (b) (d) 66. Most hydraulic circuits: Operation from a central hydraulic power unit (a) (b) use air-over-oil power units (c) Have a dedicated power unit Does not have dedicated power unit (d) 67. Hydraulic and pneumatic circuits: Perform the same way for all functions (a) (b) Perform differently for all functions (c) Perform the same with some exceptions Does not perform all the functions (d) 68. The lubricator in a pneumatic circuit is the: (a) first element in line last element in line third element in line (b) second element in line (d) When comparing first cost of hydraulic system to pneumatic system, generally they are: 69. More expensive to purchase (c) Cost is same Less expensive to purchase (d) Cost is not required (b) 70. The most common hydraulic fluid is: synthetic fluid (c) (a) Mineral (b) water (d) gel **Answer: HYDRAULIC & PNEUMATICS** 1-a 2- c 3-d 4-b 5-b 6-d 7-d 14-d 8-d 9-d 11-a 12-c 13-a 10-c 15-a 16-b 17-c 20-d 21-a 18-a 19-a 22-c 23-a 24-a 25-b 27-с 28-d 26-a 29-a 30-с 31-a 32-c 33-a 34-c 35-b 36-b 37-a 38-b 39-a 40-a 41-b 42-c 44-a 45-b 46-b 47-c 48-b 49-a 43-c 50-с 51-a 52-c 53-a 54-a 55-c 56-b 57-с 58-b 59-a 60-с 61-a 62-d 63-a 64-a 65-a 66-a 67-c 68-c 69-b 70-с

(d)

Linear, reciprocating and rotary motion

PH MEASUREMENT

- 1. Which of the following is the formula for pH calculation?
 - a) log10[H+]
 - b) -log10[H+]
 - c) log2[H+]
 - d) -log2[H+]
- 2. Pure water is known to be which of the following?
 - a) Weak electrolyte
 - b) Strong electrolyte
 - c) Neither weak nor strong
 - d) Not an electrolyte
- 3. Which of the following is the value of hydrogen ion concentration of pure water?
 - a) 1×107 moles/litre
 - b) 1×10⁵ moles/litre
 - c) 1×10⁶ moles/litre
 - d) 1×108 moles/litre
- 4. Which of the following is the value of hydroxyl ion concentration of pure water?
 - a) 1×10⁷ moles/litre
 - b) 1×10⁵ moles/litre
 - c) 1×10⁶ moles/litre
 - d) 1×108 moles/litre
- 5. Which of the following is the relation between hydrogen and hydroxyl ion concentration of pure water?
 - a) Value of hydrogen ion concentration is greater
 - b) Value of hydroxyl ion concentration is greater
 - c) They are both always the same
 - d) The concentrations keep changing
- 6. The Nernst equation is given by which of the following statements?
 - a) $E=E_0 + 2.303$ RT/F log CH
 - b) $E=E_0 2.303 \text{ RT/F log CH}$
 - c) $E=E_0 + 2.303 RT \times F \log CH$
 - d) $E=E_0 2.303 \text{ RT} \times \text{F log CH}$

Answer: a

- 7. Which of the following is the relation between the concentration of hydrogen and hydroxyl ions in an acidic solution?
 - a) Value of hydrogen ion concentration is greater
 - b) Value of hydroxyl ion concentration is greater
 - c) They are both always the same
 - d) The concentrations keep changing
- 8. Which of the following is the relation between the concentration of hydrogen and hydroxyl ions in a basic solution?
 - a) Value of hydrogen ion concentration is greater
 - b) Value of hydroxyl ion concentration is greater
 - c) They are both always the same
 - d) The concentrations keep changing
- 9. pH meters can be considered as voltage sources with which of the following internal resistances?
 - a) Very low resistance
 - b) Moderate resistance

- c) Very high resistance
- d) No resistance
- 10. The electrodes used in pH measurement have which of the following internal resistances?
 - a) Very low resistance
 - b) Moderate resistance
 - c) Very high resistance
 - d) No resistance
- 11. Which of the following is not a failure in pH meters?
 - a) Defective electrodes
 - b) Defective input circuitry
 - c) Defective electronic circuitry
 - d) Defective calibration
- 12. Which of the following is the simplest of pH meters?
 - a) Null-detector type pH meter
 - b) Direct reading type pH meter
 - c) Digital pH meter
 - d) Modern pH meter
- 13. In which of the following ways can zero drift be reduced in pH meters?
 - a) Using filter
 - b) Giving zero adjustment arrangement
 - c) Keeping the input impedance high
 - d) Using balanced and differential amplifiers
- 14. Which of the following can be used to provide automatic temperature compensation?
 - a) Proper insulation
 - b) Calibration for different temperatures
 - c) Thermistor
 - d) Thermometer
- 15. Which of the following is not the characteristic of null-detector type pH meter?
 - a) It can be battery operated
 - b) It has less accuracy
 - c) It is easy to maintain
 - d) Its electronic circuits are simple
- 16. Which of the following is not the characteristic of direct reading type pH meters?
 - a) Simple operation
 - b) Quick to use
 - c) Continuous indication output
 - d) It requires balancing process
- 17. Which of the following is not the characteristic of chopper amplifier pH meter?
 - a) Direct voltage from the electrodes is chopped at the main frequency
 - b) Using choppers for high-input resistance gives rise to spikes of waveforms at the output
 - c) It leads to stability in DC output of phase-sensitive rectifier
 - d) Magnitude of surge increases in the glass electrode output
- 18. In which of the following ways can the disadvantages of chopper amplifier type pH meter be overcome?
 - a) Using zero corrected DC amplifier
 - b) Using modern design
 - c) Using digital design
 - d) Using vibrating condenser

19.	The pH of a liquid solution is a measure of: (A) Dissolved salt content (B) Hydrogen ion activity (C) Hydroxyl ion molarity (D) Electrical conductivity
20.	(E) Sodium ion molarity A pH value less than 7.0 means that the solution is: (A) Conductive (B) Caustic (C) Hot (D) Acidic
21.	(E) Alkaline The Nernst equation relates: (A) Reagent dosage to change in pH (B) O2 concentration to latent heat (C) Relative ion concentration to voltage (D) Conductivity to fluid flow rate
22.	 (E) Partial vapor pressure to fluid density Buffer solutions are used with pH probes for the purpose of: (A) Cleaning (B) Linearization (C) Purging embedded sodium ions (D) Electrode inspection (E) Calibration
23.	Flue gas oxygen measurement ("O2 trim") is important in combustion control systems for the purpose of: (A) Reducing sulphur emissions (B) Safer shut-downs (C) Faster start-ups (D) Reducing NOX emissions (E) Minimizing burner noise
24.	An aqueous solution has a hydrogen ion concentration of 0.0015 M. Calculate the pH of this solution. (A) 2.824 pH (B) 11.18 pH (C) 2.292 pH (D) 1.824 pH (E) 2.897 pH
25.	A chromatograph separates and distinguishes different molecule types in a fluid stream by: (A) Emitted light spectra (B) Atomic mass (weighing) (C) Electric charge (D) Adsorption time-delay (E) Reverse osmosis
26.	An electrode less or toroidal conductivity probe enjoys the following advantage over electrode-type conductivity probes: (A) Smaller size (B) Resists fouling (C) Immunity to temperature changes (D) Lower cost (E) Greater sensitivity
27.	According to the Nernst equation, the voltage developed by the electrodes will when temperature increases, all other factors remaining the same.

- (a) Decrease (b) Fluctuate (c) Remain the same (d) Increase A. Less than 7 B. Less than 5 C. Less than 2
- 28. What is the pH value of very strong acid solution?

 - D. Less than zero
- 29. pH meters can be considered as voltage sources with which of the following internal resistance?
 - (a) Very low resistance
- (c) Very high resistance
- (b) Moderate resistance
- (d) No resistance
- 30. the electrode used in pH measurement have which of the following internal resistance?
 - Very low resistance (a)
- Very high resistance (c)
- (b) Moderate resistance
- (d) No resistance
- 31. Which of the following is not a failure in pH meters?
 - Defective electrodes (c)Defective electronic circuitry
 - Defective input circuitry (d) Defective calibration (b)
- 32. Which of the following is the simplest of pH meters?
 - (a) Null detector type pH meter
 - (b)Direct reading type pH meter
 - (c)Digital pH meter
 - (d)Modern pH meter
- 33. Which of following is not the characteristics of null detector type pH meter?
 - (a)It can be battery operated (c)It is easy to maintain
 - (b)It has less accuracy
- (d)Its electronic circuits are simple
- 34. Which of the following is not the characteristics of direct reading type pH meters?
 - (a)Simple operation
- (c)Continuous indication output
- (b)Quick to use
- (d)It requires balancing process
- 35. Which of the following is not the characteristic of chopper amplifier pH meter?
 - a) Direct voltage from the electrodes is chopped at the main frequency
 - b) Using choppers for high-input resistance gives rise to spikes of waveforms at the output
 - c) It leads to stability in DC output of phase-sensitive rectifier
 - d) Magnitude of surge increases in the glass electrode output

Answers: pH MEASUREMENT

1-b	2-a	3-a	4-a	5-c	6-a	7-a
8-b	9-c	10-c	11-d	12-a	13-d	14-c
15-b	16-d	17-c	18-d	19-b	20-d	21-c
22-е	23-d	24-a	25-d	26-b	27-d	28-d
29-с	30-c	31-d	32-a	33-b	34-d	35-c