STATE COUNCIL OF TECHNICAL EDUCATION AND VOCATIONAL TRAINING, ODISHA TEACHING AND EVALUATION SCHEME FOR DIPLOMA IN ENGINEERING COURSES

DIS	CIPLINE: M	ECHANICAL ENGINEERING	T			SI	EMES	STER: 3	3 RD			
SL	SUBJECT	UBJECT SUBJECT PERIODS						EVALUATION SCHEME				
NO	CODE		L	Τ	Р	IN	NTER		END	TERM	PRACTIC	TOTAL
							EXA	1	SEM	WORK	AL EXAM	MARKS
						TA	СТ	Total	EXAM			
THE	ORY											
1.	BST 301	ENGG. MATH-III	5			10	20	30	70			100
2.	MET 301	STRENGTH OF MATERIAL	5			10	20	30	70			100
3.	MET 302	ENGINEERING MATERIALS	5			10	20	30	70			100
4.	MET 303	THERMAL ENGINEERING-I	5			10	20	30	70			100
PRA	CTICAL/TER	MWORK							· · · · · · · · · · · · · · · · · · ·			
5.	MEP 301	MECHANICAL			6				100	50	0	150
		ENGINEERING DRAWING*										
6.	MEP 302	MECHANICAL			6					25	75	100
		ENGINEERING LAB										
		(STRENGTH OF MATERIAL										
		AND THERMAL										
		ENGINEERING)										
7.	MEP 303	WORKSHOP PRACTICE-II			7					25	75	100
GRA	ND TOTAL		20		19	40	80	120	380	100	150	750

Total Contact hours per week: 39

Abbreviations: L-Lecture, T-Tutorial, P-Practical, TA- Teacher's Assessment, CT- Class test

Minimum Pass Mark in each Theory Subject is 35% and in Practical subject is 50%

* Minimum pass mark in End Sem Exam is 35% & that in term work is 50%

ENGINEERING MATHEMATICS – III (COMMON TO ELECT/CSE/ETC, AE & I/CP/IT/MECH/AUTO)

Name of the Course: Diploma in MECHANICAL ENGINEERING					
Course code:	BST 301	Semester	$3^{\rm rd}$		
Total Period:	60	Examination	3 hrs		
Theory periods:	4P / week	Class Test:	20		
Tutorial:	1 P/ week	Teacher's Assessment:	10		
Maximum marks:	100	End Semester Examination:	70		

A. RATIONALE:

The subject Engineering Mathematics-III, is a common paper for Engineering branches. This subject includes Matrices, Laplace Transforms, Fourier Series, Differential Equations and Numerical Methods etc. for solution of Engineering problems.

B. OBJECTIVE:

On completion of study of Engineering Mathematics-III, the students will be able to:

- 1. Apply matrices in Engineering mechanics, electrical circuits and linear programming.
- 2. Transform Engineering problems to mathematical models with the help of differential equations and familiarize with the methods of solving by analytical methods, transform method, operator method and numerical methods.
- 3. Solve algebraic and transcendental equations by Iterative methods easily programmable in computers.
- 4. Analysis data and develop interpolating polynomials through method of differences.

Topic wise distribution of periods

Sl. No.	Topics	Period
1	Matrices	04
2	Differential equation	12
3	Laplace transform	14
4	Fourier series	14
5	Numerical methods	04
6	Finite difference & Interpolation	12
	Total:	60

COURSE CONTENTS

1. MATRICES

- 1.1 Define rank of a matrix.
- 1.2 Perform elementary row transformation to determine the rank of a matrix.
- 1.3 State Rouche's Theorem for consistency of a system of linear equations in 'n' unknowns.
- **1.4** Solve equations in three unknowns testing consistency.

2. Linear Differential Equations

- 2.1 Define Homogeneous and non-homogeneous differential equations with constant coefficients with examples.
- 2.2 Find general solution of linear equations in terms of C.F. and P.I.
- 2.3 Derive rules of finding C.F. and P.I. in terms of operator D.
- 2.4 Define Partial Differential equations(P.D.E.)
- 2.5 Form partial differential equations by eliminating arbitrary constants and arbitrary functions.
- 2.6 Solve partial differential equations of the form P.p+Q.q=R
- 2.7 Solve Engineering problems on 2.1-2.6.

3. LAPLACE TRANSFORMS

^{3.1} Define Gamma function and $\Gamma(n+1) = n!$ and find $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ (No

problem)

04

12

- 3.2 Define Laplace transform of a function f(t) and inverse laplace transform.
- 3.3 Derive L.T. of standard functions and explain existence conditions of L.T.
- 3.4 Explain linear, shifting and Change of scale property of L.T.
- 3.5 Formulate L.T. of derivatives, integrals, multiplication by t^n and division by t.
- 3.6 Derive formula of inverse L.T.
- 3.7 Solve Linear Differential Equations with constant coefficients associated with initial conditions using Transform Method(upto 2nd order only).

3.8 Solve problems on 3.2-3.7

FOURIER SERIES

- 4.1 Define periodic functions
- 4.2 State Dirichlet's conditions for the Fourier expansion of a function and its convergence.
- 4.3 Express periodic function f(x) satisfying Dirichlet's conditions as a Fourier series.
- 4.4 State Euler's formulae.
- 4.5 Define Even and Odd functions and Obtain F.S. in $(0 \le x \le 2\pi \text{ and } -\pi \le x \le \pi)$
- 4.6 Obtain F.S. of continuous functions and functions having points of discontinuity in $(0 \le x \le 2\pi \text{ and } -\pi \le x \le \pi)$.
- 4.7 Solve problems on 4.1-4.6

NUMERICAL METHODS

- 5.1 Appraise limitations of analytic method of solution of algebraic and transcendental equations.
- 5.2 Derive Iterative formula for finding the solutions of algebraic and transcendental equations by:a) Bisection method
 - b) Newton Raphson method
- 5.3 Solve problems on 5.2

FINITE DIFFERENCE and INTERPOLATION

- 6.1 Explain finite difference and form table of forward and backward difference.
- 6.2 Define shift operator(E) and establish relation between E and difference operator(Δ).
- 6.3 Derive Newton's forward and backward interpolation formula for equal interval.
- 6.4 State Lagrange's Interpolation formula for unequal intervals.
- 6.5 Explain numerical integration and state
 - 6.5.1 Newton-Cote's formula(No derivation)
 - 6.5.2 Trapezoidal Rule
 - 6.5.3 Simpson's $1/3^{rd}$ rule
- 6.6 Solve Problems on 6.1-6.5

Learning Resources:

Text Books

Sl.No	Name of Authors	Title of the Book	Name of the publisher
1	Dr.B.S. Grewal	Higher Engineering Mathematics	Khanna Publishers

Reference Book

1 Text book of Engineering Mathematics-III By C.R.Mallick Kalyani Publication

5

6

4

04

14

STRENGTH OF MATERIAL

Name of the Course: Diploma in MECHANICAL ENGINEERING						
Course code:	MET 301	Semester	3^{RD}			
Total Period:	75	Examination	3 hrs			
Theory periods:	5 P/W	Class Test:	20			
Tutorial:		Teacher's Assessment:	10			
Maximum marks:	100	End Semester Examination:	70			

Course objectives

Students will develop ability towards

- Determination of stress, strain under uniaxial loading (due to static or impact load and temperature) in simple and single core composite bars.
- Determination of stress, strain and change in geometrical parameters of cylindrical and spherical shells due to pressure
- Realization of shear stress besides normal stress and computation of resultant stress in two dimensional objects.
- Drawing bending moment and shear force diagram and locating points in a beam where the effect is maximum or minimum.
- Determination of bending stress and torsion stress in simple cases

Determination of critical load in slender columns thus realizing combined effect of axial and bending load.

Chapter ID	Topics ID	Contents	Hours
1.0	Simple	stress& strain	15
	1.1	Types of load, stresses & strains,(Axial and tangential) Hookes law, Young's modulus, bulk modulus, modulus of rigidity, Poisson's ratio, derive the relation between three elastic constants,	
	1.2	Principle of super position, stresses in composite section	
	1.3	Temperature stress, determine the temperature stress in composite bar (single core)	
	1.4	Strain energy and resilience, Stress due to gradually applied, suddenly applied and impact load	
	1.5	Simple problems on above.	
2.0		linder and spherical shell under internal pressure	9
	2.1	Definition of hoop and longitudinal stress, strain	
	2.2	Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal	
		strain and volumetric strain	
	2.3	Computation of the change in length, diameter and volume	
	2.4	Simple problems on above	
3.0		nensional stress systems	12
	3.1	Determination of normal stress, shear stress and resultant stress on oblique plane	
	3.2	Location of principal plane and computation of principal stress	
	3.3	Location of principal plane and computation of principal stress and maximum shear stress using Mohr's circle	
4.0	Bending	g moment& shear force	12
	4.1	Types of beam and load	
	4.2	Concepts of Shear force and bending moment	
	4.3	Shear Force and Bending moment diagram and its salient features	
		illustration in cantilever beam, simply supported beam and over hanging	
		beam under point load and uniformly distributed load	
5.0	Theory	of simple bending	12
	5.1	Assumptions in the theory of bending,	
	5.2	Bending equation, Moment of resistance, Section modulus& neutral axis.	
	5.3	solve simple problems	

6.0 Combined direct & Bending stresses

- 6.1 Define column
- 6.2 Axial load, Eccentric load on column,
- 6.3 Direct stresses, Bending stresses, Maximum& Minimum stresses. Numerical problems on above.
- 6.4 Buckling load computation using Euler's formula (no derivation) in columns with various end conditions

7.0 Torsion

- 7.1 Assumption of pure torsion
- 7.2 The torsion equation for solid and hollow circular shaft
- 7.3 Comparison between solid and hollow shaft subjected to pure torsion

Learning Resources:

TEXT BOOKS: 1.	S Ramamrutham R K Rajput	Strength of Materials Strength of Materials
3 Reference Books:	.R Subramanian 1. G H Rhyder 2. R C Hibbler	Strength of Materials Strength of Materials Mechanics of Materials

Name of	the Course:	: Diploma in \mathbf{N}	IECHANICA	L ENGINEERING	
Course c		1	MET 302	Semester	3 rd
Total Per	riod:		75	Examination	3 hrs
Theory p			5 P/week	Class Test:	20
Tutorial:			/	Teacher's Assessment:	10
Maximu	n marks [.]		100	End Semester Examination:	70
	Objectives		100		10
	•	p ability towar	ds		
		aterial requirer			
	-	-		n ferrous and alloys	
• (Comprehend	ling micro-stru	ctural changes	s during iron-carbon phase transform	nation process
	•	•		and its effect towards change in mat	
		•••••••••••••••••••••••••••••••••••••••	during evolut	ion in engineering materials and de	velopment of moder
	engineering	materials			
Chapter				Contents	Hours
ID 1.0	ID Enginoo	ring material	and their nr	oportios	8
1.0	1.1			ferrous and non ferrous category and	
	1.1			ysical and Chemical	ld alloys
	1.3	·	requirements		
	1.4		ability and safe	ety	
2.0	Ferrous	Materials and	d alloys		8
	2.1			tion of ferrous materials	
	2.2			and application of low carbon steel	l,
	2.2			igh carbon steel	
	2.3	steel	Low alloy steel	, high alloy steel, tool steel and stai	niess
	2.4		ffect of various	s alloying elements such as Cr, Mn,	Ni V
	2.1	Mo, W		s anoying cromonis such as cr, win,	, ,
3.0	Iron – C	Carbon system	l		8
	3.1	Concept of p	hase diagram a	and cooling curves	
	3.2		ron-Carbon dia	agram with salient micro-constituen	ts of Iron
	~	and Steel			
4.0		imperfections			10
	4.1	imperfection		on of crystals, ideal crystal and crys	ital
	4.2	1		on: Point defects, line defects, surfa	
	7.2		olume defects	on. I onit derects, nice derects, surre	
	4.3			lefects: Vacancies, Interstitials and	
		impurities	-		
	4.4	• •	uses of line de	fects: Edge dislocation and screw	
		dislocation			
	4.5			naterial properties	
	4.6 4.7		by slip and tw		
5.0	4.7 Heat Tr		ormation on m	aterial properties	12
2.0	iicat 11				14
	5.1	Purpose of H	leat treatment		

- Process of heat treatment: Annealing, normalizing, hardening, 5.2 tampering, stress relieving measures
- 5.3
- Surface hardening: Carburizing and Nitriding Effect of heat treatment on properties of steel 5.4
- 5.5 Hardenability of steel Non-ferrous alloys

6.0

Aluminium alloys: Composition, property and usage of Duralmin, y-6.1 alloy

	6.2			property and usage of Copper- bit, Phosperous bronze, brass, Copper-	
	6.3 6.4		0	ad alloys, Zinc alloys and Nickel alloys	
	0.4		•	, P-22 for power plants and other high loy materials like stainless steel grades of	
		duplex,	super duplex material	ls etc.	
7.0	Bearing	Materia			5
	7.1	Classifie	cation, composition, p	properties and uses of Copper base, Tin	
		Base, Lo	ead base, Cd base bea	ring materials	
8.0	Spring r	naterials		C .	4
	8.1			properties and uses of Iron-base and	
		Copper	base spring material	*	
9.0	9.0 Polymers				4
	9.1		es and application of	thermosetting and thermoplastic polymers	
	9.2	·	es of elastomers		
10.0	Compos		Ceramics		4
	10.1	Classifie		properties and uses of particulate based	
	10.2		cation and uses of cer		
11.0			tion and Industrial p		2
1110	11.1		s of corrosion and sur		-
	11.2			ods of industrial painting	
	11.2	i urpose	or pulling and mean	ous of industrial painting	
Learning	Resource	s:			
Text books	8	Sl.No	Author	Title of Book	Publisher
		1.	O P Khanna	A Textbook of Material Science	
				and Metallurgy	

	1.	O P Knanna	A Textbook of Material Science
			and Metallurgy
	2.	R K Rajput	Engineering materials and
			metallurgy
Reference book	1.	S K Hazrachoudhry	Material science& process

THERMAL ENGINEERING-I

Name of the Course: Diploma in MECHANICAL ENGINEERING					
Course code:	MET 303	Semester	3 rd		
Total Period:	75	Examination	3 hrs		
Theory periods:	5 P/week	Class Test:	20		
Tutorial:		Teacher's Assessment:	10		
Maximum marks:	100	End Semester Examination:	70		

Course Objectives:

Students will develop an ability towards

- Comprehending significance of thermodynamic properties in order to analyze a thermodynamic system from macroscopic view point
- Computing work and heat transfers across system boundaries
- Comprehending and applying first and second law of thermodynamics in closed and open systems involving steady flow
- Determining thermodynamic properties of water-vapor-steam using steam tables and Mollier chart
- Comprehending and applying gas laws applicable to ideal gas in order to determine thermodynamic properties as well realizing differences in real gases

Chapter ID	Topics ID	Contents	Hours
1.	Concep	ts and terminology	8
	1.1	Thermodynamic systems	
	1.2	Macroscopic and microscopic views of study, concept of continuum	
	1.3	Thermodynamic properties of a system (Pressure, volume, temperature and units of measurement)	
	1.4	Intensive and extensive properties	
	1.5	State and Process	
	1.6	Thermodynamic equilibrium	
	1.7	Quasistatic process	
2	Energy	and Work Transfer	10
	2.1	Conceptual explanation of energy, work and heat	
	2.2	Work transfer, Displacement work, forms of work transfer	
	2.3	Modes of heat transfer (Introductory concepts of conduction, convection	
		and radiation)	
	2.4	Sensible and latent heat, specific heat	
	2.5	Energy and its sources	
3		aw of thermodynamics	15
	3.1	First Law of thermodynamics	
	3.2	Energy as system property, forms of stored energy	
	3.3	First law for a closed system undergoing a cyclic process	
	3.4	First law for a closed system undergoing change of state	
	3.5	Concept of enthalpy	
	3.6	First law applied to steady flow processes	
		Steady Flow Energy Equation and its application to nozzle, turbine and	
		compressor	
_	3.7	Perpetual motion machine of first kind	
4		Law of Thermodynamics	15
	4.1	Limitations of first law	
	4.2	Thermal reservoir	
	4.3	Concept of heat engine, heat pump and refrigerator	
	4.4	Statement of Second law of thermodynamics (Clausius and Kelvin Planck),	
	4 5	Perpetual motion machine of second kind	
	4.5	Carnot cycle	
	4.6	Application of second law in heat engine, heat pump, refrigerator and determination of efficiencies and COP	

- 4.7 Clausius inequality
- 4.8 Defining entropy, entropy and disorder
- 4.9 Principle of increase in entropy

5 Working substances

- 5.1 Pure substance, what it is
- 5.2 Phase change phenomenon of pure substance and associated terminology
- 5.3 p-v, p-h and T-s diagrams
- 5.4 Specific heats
- 5.5 Dryness fraction and its measurement
- 5.6 Steam table and its use to determine unknown properties
- 5.7 Use of Mollier chart to determine unknown properties

6 Ideal gases and real gases

- 6.1 Boyle's law, Charles' law, Avogadro's law, Dalton's law of partial pressure, Guy Lussac equation, Equations of state, Characteristic Gas constant and Universal Gas constant
- 6.2 Work transfer equations for ideal gases: Constant pressure, constant volume, isothermal, polytropic, isentropic processes
- 6.3 Van der wal equation of state for real gases, Difference between ideal and real gases

Learning Resources:

Text Books:	1. P. Chattopadhyay	Engineering Thermodynamics		
	2. Domkundwar	A text book of thermal Engineering		
Reference Boo	oks: 1. P K Nag	Engineering Thermodynamics,		

2. M Rathore, Mahesh

Engineering Thermodynamics, Thermal Engineering,

MECHANICAL ENGINEERING DRAWING

	Jourse: Dip		HANICAL	L ENGINEERING	- rd
Course code:		MEP 301		Semester	3 rd
Total Period:		90		Examination	4 hrs
Theory period	ls:	6 P/week		Term Work:	50
Tutorial:				Teacher's Assessment:	
Maximum ma	ırks:	150		End Semester Examination	: 100
Course objec	tives				
Students will	develop ab	ility towards			
• Recog	gnizing sigi	nificance of st	andardized	representations	
Comp	orehending	role of vario	ous fastenin	g elements and offer enginee	ering drawing thereof ir
	al mode				0
Comp	orehending	geometrical	constraints	and function of components	in assemblies such as
	ngs and scre			-	
Comp	orehending	functional re-	quirement o	f major components and offer	engineering drawing ir
manu	al mode the	ereof	-		
Chapter				Contents	Hours
1.0 (Convention	al representa	ations		6
1	.1 Stand	ard conventio	n (SP-46):		
	Mater	ials (CI, MS,	Brass, Bron	ze, Aluminium, Wood, Glass, G	Concrete and
	rubbe	/			
	Taper				
		ce roughness			
		etrical tolerar	nces		
	Gener	al welding			
	0	g drawing of	Fastening of	elements in first angle orthog	raphic 30
	orojection				
		nut and thread	ls		
		s and rivets			
	2.3 Cotte	•			
		kle joints			
	Details to a				24
	-	pedestal bear	ing		
		step bearing			
	-	e Screw jack			
	Assembly t				30
		ecting rod of 1	C Engine		
		r safety valve			
	-	g loaded valve			
	•	ulic non retu	n valve		
4	.5 Flat b	elt pulley			
Learning Rea Text Books:		D 1		-	
L'art Llooka	ND	Bhatt	Machin	e Drawing	

Text Books:	N D Bhatt	Machine Drawing
	T Jones	Machine Drawing
	R K Dhawan	Machine Drawing

MECHANICAL ENGINEERING LABORTORY

Name of the Course: Diploma in MECHANICAL ENGINEERING			
Course code:	MEP 302	Semester	3 rd
Total Period:	90	Examination	4 hrs
Lab. periods:	6 P/week	Term Work	25
Maximum marks:	100	End Semester Examination:	75

Course Objectives

Students will develop an ability towards

- Conducting experimentations to determine properties of a solid material subject to uni axial loading and impact
- Conducting experimentations towards determining characteristics of a fuel
- Study of equipment employing using fuels

1. Strength of Materials Laboratory

- 1.1 Determine end reactions in a beam
- 1.2 Determination of Young's modulus using Searl's apparatus
- 1.3 Determination of torsional rigidity of the shaft using torsion testing machine
- 1.4 Determination of salient points (Young's modulus, yield point, fracture point) from stressstrain curve using Universal Testing Machine
- 1.5 Determination of hardness number by Rockwell/Vickers hardness testing machine
- 1.6 Determination of toughness using Impact testing machine (Charpy/Izod)

2. Thermal Engineering Laboratory

- 2.1 Study of 2-S, 4-S petrol engine
- 2.2 Study of 2-S, 4-S diesel engine
- 2.3 Determination of Flash point and fire point
- 2.4 Joule's experiment
- 2.5 Study of boilers (Fire tube, water tube)
- 2.6 Study of steam engine

WORKSHOP PRACTICE-II

Name of the Course: Diploma in MECHANICAL ENGINEERING			
Course code:	MEP 303	Semester	3 rd
Total Period:	105	Examination	4 hrs
Lab. periods:	7 P/week	Term Work	25
Maximum marks:	100	End Semester Examination:	75

Course Objectives

Students will develop an ability towards

- Practicing fitting, carpentry, smithy and machining
- Understanding the tools and equipment used in the practices
- Realize the time and resource utilization in the practices

1. Fitting practices

- 1.1 Preparation of caliper
- 1.2 Preparation of try square
- 1.3 Preparation of hammer
- 1.4 Preparation of male-female joint

2. Smithy Practices

- 2.1 Preparation of door ring with hook
- 2.2 Preparation of hexagonal head bolt
- 2.3 Preparation of octagonal flat chisel

3 Carpentry Practices

- 3.1 Cutting of slot, botch, mortise and Tenon
- 3.2 Preparation of single dove tail joint

4 Metal Machining practices

- 4.1 Plain turning
- 4.2 Step turning
- 4.3 Taper turning
- 4.4 Grooving
- 4.5 Chamfering
- 4.6 External threading