STATE COUNCIL OF TECHNICAL EDUCATION AND VOCATIONAL TRAINING, ODISHA TEACHING AND EVALUATION SCHEME FOR DIPLOMA IN ENGINEERING COURSES

DISC	DISCIPLINE: MECHANICAL ENGINEERING				5	SEMESTER: 4 TH						
SL	SUBJECT	SUBJECT	PERIODS				EVALUATION SCHEME					
NO	CODE		L	Т	Р	INTE	RNAL	EXAM	END SEM	TERM	PRACTICAL	TOTAL
						ТА	СТ	Total	EXAM	WORK	EXAM	MARKS
THEO	THEORY											
1.	MET 401	THEORY OF MACHINES	4			10	20	30	70			100
2.	MET 402	MANUFACTURING	4			10	20	30	70			100
		TECHNOLOGY										
3.	MET 403	THERMAL ENGINEERING-II	4			10	20	30	70			100
4.	MET 404	FLUID MECHANICS AND	5			10	20	30	70			100
		HYDRAULIC MACHINES										
5.	EET 421	ELECTRICAL TECHNOLOGY	4			10	20	30	70			100
PRAC	TICAL/TERM	WORK										
5.	MEP 401	FLUID MECHANICS AND			6					25	75	100
		HYDRAULIC MACHINES LAB										
6.	EEP 421	ELECTRICAL LABORATORY			6					25	50	75
		PRACTICE										
7.	MEP 402	WORK SHOP PRACTICE-III			6					25	50	75
GRAND TOTAL 21 18			18	50	100	150	350	75	175	750		
			•	I		•	•	•		·		

Total Contact hours per week: 39

Abbreviations: L-Lecture, T-Tutorial, P-Practical, TA- Teacher's Assessment, CT- Class test

Minimum Pass Mark in each Theory Subject is 35% and in Practical subject is 50%

THEORY OF MACHINES

Name of the Course: Diploma in MECHANICAL ENGINEERING					
Course code:	MET 401	Semester	4^{th}		
Total Period:	60	Examination	3 hrs		
Theory periods:	4 P/W	Class Test:	20		
Tutorial:		Teacher's Assessment:	10		
Maximum marks:	100	End Semester Examination:	70		

Course Objectives

Students will develop an ability towards

- Understanding machine as a system consisting of different link assemblies as components
- Comprehending Working principle of machine components such as clutch, brakes, bearings based on friction
- Comprehending working principles related to power transmission systems and predicting the work involved and efficiency
- Comprehending working principles in speed and torque regulating devices such as governor and flywheels
- Determination of amount and position of masses required towards static and dynamic balancing
- Comprehending types and causes of vibration in machines and predicting remedial measures

1.0 Simple mechanism

- 1.1 Link, kinematic chain, mechanism, machine
- 1.2 Inversion, four bar link mechanism and its inversion
- 1.3 Lower pair and higher pair
- 1.4 Cam and followers

2.0 Friction

- 2.1 Revision of topic previously taught
- 2.2 Friction between nut and screw for square thread, screw jack
- 2.3 Bearing and its classification, Description of roller, needle roller & ball bearings.
- 2.4 Torque transmission in flat pivot & conical pivot bearings.
- 2.5 Flat collar bearing of single and multiple types.
- 2.6 Torque transmission for single and multiple clutches
- 2.7 Working of simple frictional brakes.
- 2.8 Working of Absorption type of dynamometer

3.0 Power Transmission

- 3.1 Concept of power transmission
- 3.2 Type of drives, belt, gear and chain drive.
- 3.3 Computation of velocity ratio, length of belts (open&cross) with and without slip.
- 3.4 Ratio of belt tensions, centrifugal tension and initial tension.
- 3.5 Power transmitted by the belt.
- 3.6 V-belts and V-belts pulleys.
- 3.7 Concept of crowning of pulleys.
- 3.8 Gear drives and its terminology.
- 3.9 Gear trains, Working principle of simple, compound, reverted and epicyclic gear trains.

4.0 Governors and Flywheel

- 4.1 Function of governor
- 4.2 Classification of governor
- 4.3 Working of Watt, Porter, Proel and Hartnel l governors.
- 4.4 Conceptual explanation of sensitivity, stability and isochronism .

8

12

12

- 4.5 Function of flywheel.
- 4.6 Comparison between flywheel & governor.
- 4.7 Fluctuation of energy and coefficient of fluctuation of speed.

5.0 **Balancing of Machine**

- 5.1 Concept of static and dynamic balancing.
- 5.2 Static balancing of rotating parts.
- 5.3 Principles of balancing of reciprocating parts.
- 5.4 Causes and effect of unbalance.
- 5.5 Difference between static and dynamic balancing

6.0 Vibration of machine parts

- 6.1 Introduction to Vibration and related terms (Amplitude, time period and frequency, cycle)
- 6.2 Classification of vibration.
- 6.3 Basic concept of natural, forced & damped vibration
- 6.4 Torsional and Longitudinal vibration.
- 6.6 Causes & remedies of vibration.

Learning Resources:

Text Books

Theory of Machines by R S Khrmi Theory of Machines by R K Rajput

Theory of Machines by R R Rattan

neo Pook

Reference Book

Theory of Machines by P L Ballaney

8

MANUFACTURING TECHNOLOGY

Name of the Course: Diploma in MECHANICAL ENGINEERING					
Course code:	MET 402	Semester	4 th		
Total Period:	60	Examination	3 hrs		
Theory periods:	4 P/W	Class Test:	20		
Tutorial:		Teacher's Assessment:	10		
Maximum marks:	100	End Semester Examination:	70		

Course Objectives

Students will develop an ability towards

- Comprehending required material properties for cutting tools
- Comprehending machining mechanism principle and factors affecting machining performance •
- Comprehending working principle and components in machining tools including lathe, milling, shaping, planning, slotting machines
- Comprehending requirement of surface finish and realize principles involved in grinding and • super finishing operations

Tool Materials 1.0

1.0	1001	Water fais	
	1.1	Composition of various tool materials	4
	1.2	Physical properties & uses of such tool materials.	
2.0	Cutti	ng Tools	6
	2.1	Cutting action of various hand tools such as Chisel, hack saw blade, dies and reamer	
	2.3	Turning tool geometry and purpose of tool angle	
	2.5	Machining process parameters (Speed, feed and depth of cut)	
	2.6	Coolants and lubricants in machining and purpose	
3.0	Lath	e Machine	8
	3.1	Construction and working of lathe	
		 Major components of a lathe and their function 	
		• Operations carried out in a lathe (Turning, thread cutting, taper turning, internal	
		machining, parting off, facing, knurling)	
		Safety measures during machining	
	3.2	Capstan lathe	
		• Difference with respect to engine lathe	
		Major components and their function	
		• Define multiple tool holders	
	3.3	Turret Lathe	
		• Difference with respect to capstan lathe	
		• Major components and their function	
	3.6	Draw the tooling lay out for preparation of a hexagonal bolt & bush	
4.0	Shap	er	6
	4.1	Potential application areas of a shaper machine	
	4.2	Major components and their function	
	4.3	Explain the automatic table feed mechanism	
	4.4	Explain the construction & working of tool head	
	4.5	Explain the quick return mechanism through sketch	
	4.6	State the specification of a shaping machine.	
5.0	Planı	ning Machine	6
	5.1	Application area of a planar and its difference with respect to shaper	
	5.2	Major components and their functions	
	5.3	The table drive mechanism	
	5.4	Working of tool and tool support	
	5.5	Clamping of work through sketch.	
6.0	Milli	ng Machine	8

6.1 Types of milling machine and operations performed by them

	67	Exploin work holding attachment	
	0.2 6.2	Explain work notating attachment	
	0.5	Dresedure of simple and compound in device	
	0.4	Procedure of simple and compound indexing	
= _	0./	illustration of different indexing methods	6
7.0	Slott	er	6
	/.1	Major components and their function	
	7.2	Construction and working of slotter machine	
	7.3	Tools used in slotter	
8.0	Grin	ding	6
	8.1	Significance of grinding operations	
	8.2	Manufacturing of grinding wheels	
	8.3	Criteria for selecting of grinding wheels	
	8.4	Specification of grinding wheels with example	
		Working of	
		Cylindrical Grinder	
		Surface Grinder	
		• Centre less Grinder	
9.0	Inter	nal Machining operations	6
	Class	sification of drilling machines	
	9.1	Working of	
		• Bench drilling machine	
		• Pillar drilling machine	
		• Radial drilling machine	
	9.2	Boring	
		• Basic Principle of Boring	
		• Different between Boring and drilling	
	9.3	Broaching	
		• Types of Broaching (pull type, push type)	
		Advantages of Broaching and applications	

- 10.0 Surface finish, lapping
 - 10.1 Definition of Surface finish
 - Define super finishing
 - 10.2 Description of lapping & explain their specific cutting.

Learning Resources:

Text Books

Work shop Technology by Hazra Choudhary Vol.-I, Vol.-II Manufacturing Technology by P. N. Rao, Vol.- I, Vol.- II 1.

4

2.

Reference Books

Work shop Technology Part-I & II by W.A.S Chapman 1.

THERMAL ENGINEERING-II

Name of the Course: Diploma in MECHANICAL ENGINEERING					
Course code:	MET 403	Semester	4 th		
Total Period:	60	Examination	3 hrs		
Theory periods:	4 P/W	Class Test:	20		
Tutorial:		Teacher's Assessment:	10		
Maximum marks:	100	End Semester Examination:	70		

Course Objectives:

- Students will develop an ability towards
- Comprehending major theoretical cyclic processes using vapor and gas as working substances and computing work done and efficiencies thereof.
- Comprehending heat transfer modes and computing heat transferred through conduction, convection and radiation from simple structures.
- Comprehending refrigeration cycles in practice and computing coefficient ofm performance and efficiencies.

Chapter	Topics	Contents	Hours			
1.	Vapor I	Power Cycles	12			
	1.1	Steam power plant lay out				
	1.2	Steam power plant cycle				
	1.3	Carnot vapor cycle				
	1.4	Rankine vapor cycle				
	1.5	Modifications to Rankine vapor cycles				
	1.6	Qualities of ideal working fluid for vapor power cycle				
	1.7	Binary vapor cycles				
2	Gas Pov	wer cycles	12			
	2.1	Concept of IC Engine				
	2.2	Otto cycle				
	2.3	Diesel cycle				
	2.4	Dual cycle				
	2.5	Comparison of Otto, Diesel and dual cycles				
	2.6	2S and 4S engines and differences thereof				
3	Fuels and Combustion					
	3.1	Hydrocarbon fuels				
	3.2	Combustion reactions (Explanation only), concept of stoichiometric				
		combustion, complete combustion and incomplete combustion				
	3.3	Enthalpy of formation, enthalpy of reaction				
	3.4	Heating values for fuels				
	3.5	Quality of IC Engine fuels: Octane Number and Cetane number				
4	Heat Tr	ansfer	16			
	4.1	Modes of heat transfer				
	4.2	Fourier law of heat conduction, thermal conductivity				
	4.3	Steady state heat conduction in solids (Plane wall, hollow cylinder, hollow				
		sphere)				
	4.4	Convective heat transfer, Newton's law of cooling				
	4.5	Radiation heat transfer, Stefan Boltzman Law				
	4.6	Theories of radiation: Maxwell's theory, Max Planck's theory; Black body				
		radiation				
	4.7	Surface absorption, reflection and transmission				
	4.8	Kirchoff's law relating to spectral emissive power to absoptivity				
	4.9	Heat exchangers: concept, application and classification				
5	Refrige	ration cycles	10			
	5.1	Concept of refrigerators and heat pumps				
	5.2	Reversed Carnot cycle and its limitations				

5.3 Ideal vapor compression refrigeration cycle

- Actual vapor compression refrigeration cycle Gas refrigeration cycle 5.4
- 5.5

Learning Resources: Text Books: Engineering Thermodynamics, Thermal Engineering:

P. Chattopadhyay Mahesh M Rathore

FLUID MECHANICS AND HYDRAULIC MACHINES

Nor	ha of t	the Course: Dinlome in M		ENGINEEDING		
Con		nie Course: Dipionia în r	MET 404		1 th	
Tota	1 Dor	lad	1VIE I 404	Examination	4 2 h=0	
Tota			7.5 5.D/W		3 1118	
The	ory pe	erious:	5 P/W		20	
Tuto	orial:	1	100	Teacher's Assessment:	10	
Max	imun	n marks:	100	End Semester Examination:	70	
Stud	 Ise O Ients v C R A D Proj 	will develop an ability to comprehending fluid prop ealizing conditions for fl pplying Bernoulli's theo petermining work done as perties of Fluid	wards perties and their loatation orem nd efficiency in	r measurements hydraulic machines		
	1.1 1.2	Definitions and Units of Definitions and Units of Capillary phenomenon	of Density, Spec of Dynamic visc	cific weight, specific gravity, spec cosity, kinematic viscosity, surfac	cific volume e tension	5
2.0	Flui 2.1 2.2 2.3	d Pressure and its mea Definitions and units o Concept of atmospheric Pressure measuring ins Manometers: Simple an Bourden tube pressure (Simple Numerical)	surements f fluid pressure c pressure, gaug truments nd differential gauge	, pressure intensity and pressure h ge pressure, vacuum pressure and	nead absolute pressure	8
3.0	Hvd	Irostatics				8
5.0	3.1	Definition of hydrostat	ic pressure			0
	3.2	Total pressure and cent	tre of pressure of	on immersed bodies		
		(Simple Numericals)				
	3.3	Archimedis' principle,	concept of buo	yancy, metacentre and metacentri	ic height	
10	3.4 Flui	Concept of floatation				10
 0	4.1	Types of fluid flow				10
	4.2	Continuity equation (S	tatement and pr	coof for one dimensional flow)		
	4.3	Bernoulli's theorem (S Applications and limita (Simple Numericals)	tatement and prations of Bernor	roof) ulli's theorem (Venturi meter, pito	ot tube)	
	4.4	Definition of orifices.	Orifice coefficie	ents (Cc, Cv, Cd and relation amo	ong them)	
5.0	Flov	w through pipe				10
	5.1	Definition of pipe, law	s of fluid frictio	on		
	5.2	Head loss due to friction	on: Darcy's and	Chezy's formula)		
60	5.3 Imn	Hydraulic gradient and	total gradient l	ine		10
0.0	6.1	Impact of iet on fixed s	and moving ver	tical flat plates, derivation of wor	k done on series of	10
	5.1	vanes and condition for	r maximum effi	iciency		
	6.2	Impact of jet on movin	g curved vanes	illustration using velocity triang	les derivation of	
			-		ies, derivation of	
		work done, efficiency	-			
7 0	U	work done, efficiency (Simple Numericals)	-	,		10

- 7.1 Layout and readines of hydroelectric power plant
 7.2 Definition and classification of hydraulic turbines
 7.3 Construction and working principle of Impulse turbine (Pelton wheel)

Velocity triangle of a single bucket, work done and efficiency in Pelton wheel (Numerical Problems)

12

P N Chandramouli

7.4 Construction and working principle of Reaction turbine (Francis turbine) Velocity triangle, work done and efficiency (Numerical Problems) Construction and working principle of Kaplan turbine

8.0 Hydraulic Pumps

- 8.1 Definition and classification of pumps
- 8.2 Centrifugal Pumps
 Construction and working principles, velocity diagram of a single impeller, work done and efficiency (Numerical Problems)
 Concept of multistage centrifugal pumps
 Cavitation-Causes and its effect
- 8.3 Reciprocating Pumps Construction and working principle of single acting and double acting reciprocating pumps
- 8.4 Concept of slip and negative slip

Learning Resources:

Text	Title of Book	Author
Books:		
	Fluid Mechanics and Hydraulic Machines	R K Bansal
	Hydraulics, Fluid mechanics and Fluid machines	S Ramamrutham
Reference	Hydraulics and fluid mechanics including hydraulic machines	Modi and Seth
	Fluid Mechanics and Machinery	C S P Ojha,
		R Berndtsson,

ELECTRICAL TECHNOLOGY

Name	of the Course: Diploma in N	IECHANICAL	ENGINEERING		
Course	e code:	EET 421	Semester	4^{th}	
Total I	Period:	60	Examination	3 hrs	
Theory	periods:	4 P/W	Class Test:	20	
Tutori	al:		Teacher's Assessment:	10	
Maxin	num marks:	100	End Semester Examination:	70	
Cours	e Ohiectives	100			
Studen	ts will develop an ability to	wards			
•	Understanding of fundame	entals related to	electrical power generation, transmission,	distribution	
	and utilization		r,		
•	Comprehending construct	ion and working	principles of electrical machines including	AC motor,	
	DC motor, alternator and	AC machines			
•	Realization of electrical dr	ives in industria	l establishments		
Compi	ehending application of electron	ctrical machines	in manufacturing and farming sector		
1.0	Introduction to Electrical	Power supply sy	stem generation, transmission, Distribution	4	
	and Utilization. AC Suppl	y and DC Suppl	y		
2.0	Three phase supply: Star	and Delta circu	it, Line and Phase relationship, power	6	
	equation with numerical p	roblems			
3.0	Measuring Instruments: Introduction to construction, operation and use of AC and				
	DC ammeter, voltmeter, e	lectrodynamic V	Vatt meter, energy meter and digital		
	multimeter, Clip on motor				
4.0	DC Motor: Construction and principle of operation, Speed and torque				
	characteristics. Types, specifications and ratings and applications, types of insulation				
5.0	used with numerical problems				
5.0	AC Machines:	on and principle	of operation amf equation and	0	
	transformation ratio Load	test efficiency	and regulation. Specifications and rating		
	Auto transformer and 3-ph	ase transformer	concept only		
	Applications of transformed	ers with numeric	cal problems		
6.0	AC Motor: Construction	and principles o	f operation of 3 phase induction motor.	8	
	Speed torque characteristic	cs, slip, speed co	ontrol (V/f) , reversal of rotation, starters.	-	
	Single phase motor, Unive	ersal motor, step	per motor & servo motor. Motor		
	specification & ratings. Ap	pplications of th	ese motors in various fields		
7.0	Alternator: Construction,	principles of op	peration and applications. Self and separate	8	
	excitation.				
	Synchronous Motor: Con	nstruction, princ	iples of operation, methods of starting and		
	applications with numeric	al problems.			
8.0	Industrial applications: (Classification of	drives, factors for selection of motor for	4	
0.0	different drives, Enclosure	es and Mounting	<u>S</u>	4	
9.0	Electric heating and well	ding: Working j	principles and types selection of the	4	
10.0	system, specifications and	rating	anatoma Concept on denin sinte used in	2	
10.0	electrometallurgical and	reletero Agro	tro agro systems (Irrigation pumps)	Z	
	electropianing. Electrical I		no-agro systems (intrgation pumps)	<u> </u>	
Loom	ing Descurress.				
Learn	Tant Declar Election 1 T		ahaa ELDC Dubling in a	1	
	Electrical Tec	hnology, E. Hu	glies, ELBS Fublications		
	Electrical Tech	hnology, H Cott	UII, FILLIALI FUULICALIONS		
	Electrical Tech	111010gy, v011-4	, D L Thereja, S. Chand Publications		

FLUID MECHANICS AND HYDRAULIC MACHINES LAB

Name of the Course: Diploma in MECHANICAL ENGINEERING						
Course code:MEP 401Semester4th						
Total Period:	90	Examination	4 hrs			
Lab. periods:	6 P/W	Term Work	25			
Maximum marks:	100	End Semester Examination:	75			

Course Objectives:

Students will develop an ability towards

- Measure pressure using different pressure measuring instruments
- Experimentally verify Bernoulli's theorem
- Determination of hydraulic coefficients
- Performance evaluation in hydraulic machines

Sr No

1 Study of pressure measuring devices (manometer, Bourdon tube pressure gaguge)

Content

- 2 Verification of Bernoulli's theorem
- 3 Determination of Cd from venturimeter
- 4 Determination of Cc, Cv, Cd from orifice meter
- 5 Determine of Darcy's coefficient from flow through pipe
- 6 Performance test in impulse turbine
- 7 Study of dissected models of turbines and pumps
- 8. Performance test in reaction turbine
- 9. Performance test in centrifugal pump
- 10. Performance test in reciprocating pump

ELECTRICAL LABORATORY PRACTICE

Name of the Course: Diploma in MECHANICAL ENGINEERING						
Course code:EEP 421Semester4th						
Total Period:	90	Examination	4 hrs			
Lab. periods:	6 P/W	Term Work	25			
Maximum marks:	75	End Semester Examination:	50			

Course Objectives

Students will develop an ability towards

- Observe and identify electrical components
- Measuring earth resistance
- Operation and performance measurement of electrical machines

Sr No

- 1 Study of different parts and identification of terminals and testing of insulation resistance of a DC machine
- 2 Study of 3 point and 4 point starter
- 3 Speed variation of DC motor by field control and armature voltage control method
- 4 Identification of terminals and determination of transformation ratio of a single phase transformer.

Content

- 5 Determination of regulation of transformer by direct loadings
- 6 Measurement of earth resistance of an earthing installation
- 7 Study of PMMC & MI type instrument
- 8. Start and run of a 3-phase induction rotor by Star-Delta
- 9. Connect and run an alternator and starter, measure the terminal voltage on different load condition
- 10. Start and run a synchronous motor and measure its speed at no load

WORK SHOP PRACTICE-III

Name of the Course: Diploma in MECHANICAL ENGINEERING				
Course code:	MEP 402	Semester	4th	
Total Period:	90	Examination	4 hrs	
Lab. periods:	6 P/W	Term Work	25	
Maximum marks:	75	End Semester Examination:	50	

Course Objectives:

Students will develop an ability towards

- Preparing components and jobs using foundry, welding and machining
- Realizing process parameters involved and their effects

1.		Foundry Practices
	1.1	Preparation of simple moulds
	1.2	Preparation of cores
	1.3	Job involving ferrous/non ferrous casting
2.		Welding Practices
	2.1	Butt joint through Arc welding
	2.2	Lap joint through Gas welding
	2.3	Joining two non-ferrous parts through TIG/MIG
3		Machining Practices
	3.1	Job involving drilling, boring
	3.2	Internal threading

3.3 Job involving use of Capstan turret lathe