STATE COUNCIL OF TECHNICAL EDUCATION AND VOCATIONAL TRAINING, ODISHA TEACHING AND EVALUATION SCHEME FOR DIPLOMA IN ENGINEERING COURSES

DISCIPLINE: CERAMIC TECHNOLOGY					SE	SEMESTER: 4 TH						
SL	SUBJECT	SUBJECT	PE	RIO	DS		EVALUATION SCHEME					
NO	CODE		L	Τ	Р	IN	INTERNAL		END	TERM	PRACTICAL	TOTAL
							EXA	Μ	SEM	WORK	EXAM	MARKS
						TA	CT	Total	EXAM			
THE	CORY											
1.	ETT 421	APPLIED ELECTRONICS	Δ		_	10	20	30	70			100
		AND CONTROL	-	_	_	10	20	50	70			100
2.	CTT 401	CERAMIC SCIENCE-II	4	-	-	10	20	30	70			100
3.	CTT 402	TECHNOLOGY OF	4	_	_	10	20	30	70			100
		REFRACTORY	-			10	20	50	70			100
4.	CTT 403	CERAMIC KILN, FURNACE	4	_	-	10	20	30	70			100
		AND FUELS	· ·			10	20	50	,,,			100
5.	CTT 404	COMPUTER APPLICATION	4	_	-	10	20	30	70			100
		IN CERAMIC INDUSTRY	-			10		00				100
PRA	CTICAL/TE	ERM WORK			-		-	1				
6.	ETP 421	APPLIED ELECTRONICS	_	_	4					25	25	50
		AND CONTROL LAB								23	25	
7.	CTP 401	FUEL TESTING LAB	-	-	3					25	25	50
8	CTP 402	CERAMIC WORKSHOP II	_	_	5					25	25	50
		LAB	_		5					23	25	50
9.	CTP 403	CERAMIC TESTING II LAB	-	-	5					25	25	50
10.	CTP 404	TECHNICAL SEMINAR			2					25	25	50
GRAND TOTAL			20		19	40	80	120	380	125	125	750

Total Contact hours per week: 39
Abbreviations: L-Lecture, T-Tutorial, P-Practical, TA- Teacher's Assessment, CT- Class test
Minimum Pass Mark in each Theory Subject is 35% and in Practical subject is 50%

APPLIED ELECTRONICS AND CONTROL

Name of the Course: Diploma in CERAMIC TECHNOLOGY				
Course code:	ETT 421	Semester	4 th	
Total Period:	60	Examination	3 hrs	
Theory periods:	4 P/W	Class Test:	20	
Tutorial:		Teacher's Assessment:	10	
Maximum marks:	100	End Semester Examination:	70	

Objectives :

On completion of this course, students will be able to develop understanding and use of

- 1. Special Semiconductor devices
- 2. Opto electronic supply
- 3. Regulated power supply
- 4. Principles of digital electronics
- 5. Sensors and transducers
- 6. Microprocessor
- **7.** PLC

Distribution of Periods

UNIT-1	Special Semiconductor Devices	06
UNIT-2	Opto-Electronic Devices	03
UNIT-3	Regulated Power supply	09
UNIT-4	Principles of Digital Electronics	08
UNIT-5	Sensors and Transducers	15
UNIT-6	Microprocessors	12
UNIT-7	PLC	07
	Total	60

UNIT-1 SPECIAL SEMICOUDNCTOR DEVICES

Explain Characteristics, Principle of operation and applications of

- 1.1 PET
- 1.2 MOSFET
- 1.3 UJT
- 1.4 SCR
- 1.5 TRIAC
- 1.6 DIAC

UNIT -2 OPTO-ELECTRONIC DEVICES

Explain the operation and use of

- 2.1 LED
- 2.2 LCD
- 2.3 Opto-Coupler
- 2.4 LASER

UNIT-3 REGULATED POWER SUPPLY

- 3.1 Explain the function of ordinary DC power supplier
- 3.2 Classify different units of DC series voltage regulators

- (i) Sampling units
- (ii) Reference units
- (iii) Comprising units
- (iv) Amplifier units
- (v) Control units
- (vi) Complete series & shunt voltage regulators
- 3.3 Explain the operation of switching mode power supply (AC & DC)

UNIT – 4 PRINCIPLES OF DIGITAL ELECTRONICS

- 4.1 Explain types of flip Flop and its use
- 4.2 Describe briefly about memory element
- 4.3 Explain the function of shift registers
- 4.4 Describe the function and use of Mod 10 and ring counter.

UNIT – 5 SENSORS AND TRANSDUCERS

- 5.1 Describe Sensors for sensing pressure, temperature, moisture humidity, flow, level.
 - (i) Explain temperature measurement using Resistance Thermometer, Thermocouple, Thermister.
 - (ii) Explain Pressure measurement using manometer, U tube, Elastic type Pressure gauge (Bourdon tube, diaphragm, bellows etc.)
 - (iii) Classification of flow meter, Variable head flow meter, principle of operation advantage and disadvantage of orifice plate, venture tube nozzles.
- 5.2 Describe the function of Limit switch. Proximity Switch. Alarm annunciation and its use.

UNIT – 6 MICROPROCESSOR

- 6.1 Describe introduction to Intel 8085
- 6.2 Explain register organization of 8085
- 6.3 Introduction sets of 8085
- 6.4 Describe assembly language concepts
- 6.5 Describe preparation small programmers using 8085
- 6.6 Explain the use of
 - (i) Data bus
 - (ii) Address bus
 - (iii) Control bus
 - (iv) Interrupt time line
 - (v) Multi planning busses.
- **UNIT 7**
- 7.1 Explain basic structure and operation of PLC
- 7.2 Describe simple ladder logic
- 7.3 Right simple ladder programme (implementing only OR, AND, NOR & NAND logic.)

LEARNING RESOURCES:

- 1. Integrated Electronics, analog and Digital systems by J. Millman & Christos C. Halkius.
- 2. Electronic Devices and Circuits by Motor Shed.
- 3. Electronic Device and Circuits by G. K. Mithal
- 4. Power Electronics by Rashid
- 5. Digital Circuits & Systems by doughals 1: Hall Mc. Graw Hill Publications
- 6. Digital Electronics by Gaur

- 7. Digital Systems Design by Mano
- 8. Microprocessor by Gaonkar
- 9. Microprocessor by B. Ram
- 10. Industrial Electronics by Paul B. Zaber
- 11. Mechanical Measurement & Measuring Circuit by S. Khedkar
- 12. Instrumentation by Nakara Choudhury.
- 13. Industrial electronics by S. N. Biswas
- 14. Mechanical and Industrial Measurement by R. K. Jain
- 15. Electrical and Electronic Instrumentation by A. K. Sawhney
- 16. Industrial Instrumentation by Fibrace
- 17. Industrial Electronics by G. K. Muhal

CERAMIC SCIENCE-II

Name of the Course: Diploma in CERAMIC TECHNOLOGY				
Course code:	CTT 401	Semester	4 th	
Total Period:	60	Examination	3 hrs	
Theory periods:	4 P/W	Class Test:	20	
Tutorial:		Teacher's Assessment:	10	
Maximum marks:	100	End Semester Examination:	70	

Objectives : After completion of course study will be able to :

- 1. Know detail on atomic structure and periodic table.
- 2. Understand chemical bounding, crystallography.
- 3. Understand Phase transformation.
- 4. Know properties of ceramic material.
- 5. Understand Microstructure of ceramic product.
- 6. Know effect of Temperature on ceramic materials .

Sl. No.	Major Topics	Periods
1	Atomic Structure	05
2	Chemical Bounding	05
3	Crystallography	10
4	Diffusio Micro structure n & Phase	05
	Transformation	
5	Effect of Temperature	10
6	Properties of Ceramic materials	15
7	Micro structure	10

COURSE CONTENTS

1.0 ATOMIC STRUCTURE AND PERIODIC TABLE.

- 1.1 Fundamental concept on Atomic Structure & Electronic Configuration of Atoms.
- 1.2 Discuss the importance of the periodic table

2.0 CHEMICAL BONDING

- 2.1 Define Chemical Bonding
- 2.2 State and explain different types of bonds like Ionic covalent metallic, vander walls and Hydrogen bond
- 2.3 Bond energy and Bond strength.
- 2.4 State and explain different physical properties based on chemical bonding.

3.0 CRYSTALLOGRAPHY

- 3.1 Define Crystal system
- 3.2 Explain different types of crystal system
- 3.3 Define Crystal Defects
- 3.4 State different types of crystal defects
- 3.5 Draw the following structure of :
 - a. NaCI
 - b. CSCI

- c. Clay
- d. Silicate structure

4.0 **DIFFUSION & PHASE TRANSFORMATION (Fundamental idea only)**

- 4.1 Diffusion
- 4.2 Fix law of Diffusion
- 4.3 Sintering & Grain Growth
- 4.4 Factors affecting sintering & vitrification
- 4.5 Phase Transformation
- 4.6 Define Nucleation and grain growth

5.0 EFFECT OF TEMPERATURE

- 5.1 State the effect of temperature on Silica, Zircon, Magnesite, Clay, Alumino silicate mineral, Dolomite, Chromites and Graphite, etc.
- 5.2 Describe the different change during firing of Ceramic.
- 5.3 Pyro chemical changes in triaxial bodies

6.0 **PROPERTIES OF CERAMIC MATERIALS**

- 6.1 State and explain following properties of ceramic material in brief
 - a. Mechanical
 - b. Electrical
 - c. Optical
 - d. Thermal
 - e. Magnetic
- 6.2. Comparison of ceramic with polymer & metals.

7.0 MICRO STRUCTURE

- 7.1 Define Micro Structure & its characteristics
- 7.2. Various technique of studying microstructure
- 7.3 Describe different types of Microscopes like:
 - a. Mineralogical Micro Scope
 - b. Electron Microscope
- 7.4 Describe the process to prepare a specimen to study microstructure of typical ceramic materials and products.
- 7.5 Micro Structure of various white wares and refractory products.
- 7.6 Development of microstructure in relation to sintering and control of microstructure.

Learning Resources :

- 1. Introduction to Ceramics by W.D. Kingery
- 2. Material Science by V. Ragavan
- 3. Material Science and Engineering By N. Gupta and R.C. Gupta.
- 4. Material Science by F. D. Gyanm.
- 5. Industrial ceramic by Singer & Singer.
- 6. Physical ceramic for engeineers by V. Vlack

TECHNOLOGY OF REFRACTORY

Name of the Course: Diploma in CERAMIC TECHNOLOGY				
Course code:	CTT 402	Semester	4 th	
Total Period:	60	Examination	3 hrs	
Theory periods:	4 P/W	Class Test:	20	
Tutorial:		Teacher's Assessment:	10	
Maximum marks:	100	End Semester Examination:	70	

Objectives :

After completion of the course the students will be able to

- 1. Understand various types of refractories their classification and their manufacturing process.
- 2. Know testing of Refractories in details.
- 3. Understand the causes of failure of refractories.
- 4. Understand refractories, cement and monolithic and their application in metal extraction.
- 5. To know about insulating brick and fibrous refractories materials and their application.
- 6. Know specifications of refractories as per B.I.S.

Sl.No.	Major Topic	Periods
1.	Refractories, classification & raw materials	05
2.	Acid Refractories and Basic Refractories	15
3	Neutral Refractories & other refractories	20
4	Testing of Refractories	10
5	Failure of Refractories	05
6	Monolithic Refractories	05

COURSE CONTENTS

1.0 REFRACTORIES, CLASSIFICATION & RAW MATERIALS

- 1.1 Introduction to Refractories
- 1.2 Define Refractories
- 1.3 State the importance of refractory
- 1.4 Classify refractories
- 1.5 Raw materials for refractory, Natural & Synthetic raw materials.

2.0 ACID AND BASIC REFRACTORY (Manufacturing, properties and uses)

- 2.1 Acid Refractories
 - (a) Fire clay Refractories
 - (b) Silica Refractories & Semi Silica refractory.
 - (c) Sillimanite refractory, Kyanite and other alumino silicate refractories
- 2.2 Define Basic Refractories & preparation properties uses of following refractories in brief.
 - (i) Magnesite refractories
 - (ii) Chrome based refractories
 - (iii) Dolomite refractories
 - (iv) Forsterite Refractories

3.0 NETURAL AND OTHER REFRACTORIES

- 3.1 Discuss preparation, properties and uses of following refractories in brief:-
 - (i) Graphite refractories (iii) Silicon Carbide Refractories
 - (ii) Zirconia refractories (iv)Spinal Bricks
- 3.2 Fusion cast refractories properties and application
- 3.3 Insulation refractory bricks -properties, uses and manufacturing.
- 3.4. Carbon containing Refractory:- Manufacturing, Properties and Uses. Magnesia – Carbon Refractory Alumina – Magnesia – Carbon Refractory Alumina – Carbon Refractory
- 3.5. Refractory hollow ware:- stopper, Nozzle, Pipes and Crucibles, Muffle, Glass Pot etc.
- 3.6 Fibrous Refractory materials & their applications.

4.0 TESTING OF REFRACTORIES:

- 4.1 Physical Test Of Refractories
- 4.2 Testing of Castables
- 4.3 Dimension of Various Refractories.
- 4.4. PCE & RUL of refractory.
- 4.5 BIS Specification for Various Refractories.

5.0 FAILURE OF REFRACTORIES

- 5.1 Various factory responsible for failure of refractories.
- 5.2 Various methods of repairing in hot atmosphere in furnace.

6.0 MONOLITHIC REFRACTORIES

- 6.1 Castables ,their types, manufacturing process and uses.
- 6.2 Plastic masses, Ramming Masses, Gunning Masses, Spraying Masses, Patching Masses.
- 6.3 Refractory Cement and mortars and their uses.

Learning Resources :

- 1. Refractories : production & Properties by J.H. Chester.
- 2. Refractories by Chesti
- 3. Refractories their manufacturing properties & uses by M.L. Mishra
- 4. Technology of ceramics & refractories by P.P. Budnikov
- 5. Refractories by NANDI Refractory – F.H. Norton

CERAMIC KILN, FURNACE AND FUELS

Name of the Course: Diploma in CERAMIC TECHNOLOGY					
Course code:	CTT 403	Semester	4^{th}		
Total Period:	60	Examination	3 hrs		
Theory periods:	4 P/W	Class Test:	20		
Tutorial:		Teacher's Assessment:	10		
Maximum marks:	100	End Semester Examination:	70		

Objectives :

- After completion of the course, the students will be able to:
- 1. Understand types of fuels required for ceramic industry.
- 2. know in detail of various solid, liquid and gaseous fuels & their application.
- 3. Know the construction & operation of various ceramic kilns.
- 4. Know various types of metallurgical furnaces; their construction & operation.
- 5. understand general idea on pyrometer and pyroscope.

Sl.No.	Major Topic	Periods
1.	Introduction to fuels and combustion	10
2.	Solid Fuels, Liquid Fuels & Gaseous Fuels	20
3	Ceramic kilns	15
4	Metallurgical furnaces	10
5	Introduction to Pyroscope and Pyrometer	05

COURSE CONTENT

1.0 INTRODUCTION TO FUEL & COMBUSTION

- 1.1. State and explain introduction to solid, liquid and gaseous fuels
- 1.2. Explain Non-conventional source of energy for burning ceramic kiln
- 1.3. State and explain combustion of fuels
- 1.4. Combustion calculation
- 1.5 Terms & Definition relating to fuel testing.

2.0 SOLID, LIQUID AND GASEOUS FUELS:

- 2.1 State various types of solid fuels.
- 2.2 Classify solid fuels.
- 2.3. Describe methods of formation of coal.
- 2.4. State & explain the properties of coal.
- 2.5. Describe in detail how coke is prepared in coke oven.
- 2.6. State the properties of coke.
- 2.7. Describe the procedure for storage of coal.
- 2.8. State the reasons for washing of coal.
- 2.9. Describe briefly the gradation of coal, selection of coal for different use.
- 2.10 Testing of solid fuel.
- 2.11 Classify liquid fuels.
- 2.12 Describe the process of refining crude petroleum product.
- 2.13 State and explain the properties of various liquid fuels and petroleum by products.
- 2.14 State the advantages of liquid fuels over solid fuels.
- 2.15 Testing of liquid fuels
- 2.16 Furnace oil & storage of liquid fuel
- 2.17 Classify gaseous fuel.

- 2.18 State and explain the properties of various gaseous fuels and their application in industries & Blast Furnace Gas, Coke oven gas, BOF Gas, Coal Gas, Oil Gas.
- 2.19 Explain in details the manufacturing method of producer gas.
- 2.20 List the advantages of gaseous fuel over liquid and solid fuel.
- 2.21 Describe the manufacturing methods of biogas.
- 2.22 Testing Gaseous fuel.
- 2.23 Rocket Fuel and nuclear fuel.

3.0 CERAMIC KILNS

- 3.1. Define kiln, furnace and oven
- 3.2. Classify ceramic kiln in details
- 3.3. Describe the construction operation of the following kilns in details :
 - a) Down Draft kiln
 - b) Up draft kiln.
 - c) Chambr kiln
 - d) Tunnel kiln & Roller Hearth kiln
 - e) Muffle kiln
 - f) Shaft Kiln
 - g) Glass Pot furnace
 - h) Glass Tank furnace
 - i) Electric furnace for glass melting
 - j) Rotary kiln
 - h) Coke Oven
- 3.4. List the advantages of continuous kiln over periodic kiln
- 3.5. Describe various type of kiln furniture used in ceramic kilns
- 3.6. Describe various types of furnaces and kiln accessories used in kiln operation.

4.0 FURNACES (Introduction only)

- 4.1 Classification of Furnaces.
- 4.2 Furnace used in steel plant & their classification.
- 4.3 Fuels used in steel plant furnaces & their characterstics.
- 4.4 Sketch the following furnaces showing various sections.
 - a) Blast furnace.
 - b) Cupola
 - c) Open hearth furnace
 - d) Ladle refining furnace
 - e) Basic Oxygen Furnace etc.
 - f) Electric Arc Furnace.

6.0 **PYROSCOPE AND PYROMETER**

- 6.1 Define pyroscope and pyrometer
- 6.2 Discuss various types of pyroscope.
- 6.3 Describe various types of cones used in ceramic kiln firing.
- 6.4 State the requirements of pyroscope and pyrometer in kiln firing.
- 6.5. Describe various pyrometers used in ceramic kiln firing.

Learning Resources :-

- 1.
- Fuels and Combustion by S.Sarkar Fuels Solid, liquid & gaseous by J.S.S. Brame & King. Fuels furnace refractory by Gupta. Furnace By Trink Industrial Ceramic by singer and signer 2.
- 3.
- 4.
- 5.

COMPUTER APPLICATION IN CERAMIC INDUSTRY

Name of the Course: Diploma in CERAMIC TECHNOLOGY					
Course code:	CTT 404	Semester	4 th		
Total Period:	60	Examination	3 hrs		
Theory periods:	4 P/W	Class Test:	20		
Tutorial:		Teacher's Assessment:	10		
Maximum marks:	100	End Semester Examination:	70		

Objectives: After completion of this course, student will be able to:

- 1. Know the basic fundamentals on computer application
- 2. Know the use of computer in ceramic industries
- 3. Know computer design in various ceramic products
- 4. know robotics application in ceramic industries

Sl No	MAJOR TOPIC	PERIODS
1	INTRODUCTION TO BASIC COMPUTER APPLICATION	10
2	COMPUTER LANGUAGE	15
3	COMPUTER COMMUNICATION	10
4	COMPUTER APPLICATION IN CERAMIC PRODUCT MAKING	15
5	ROBOTICS (General idea only)	10

COURSE CONTENT:

1.0 INTRODUCTION TO BASIC COMPUTER APPLICATION

- 1.1 Basic computer application in industries
- 1.2 Operating system fundamentals
- 2.0 COMPUTER LANGUAGE
 - 2.1 Fundamental ideas on programming languages
 - 2.2 Application of computer languages in ceramic manufacturing
 - 2.3 Work processing using MS-Word
 - 2.4 Data manipulation using MS-Excel
 - 2.5 Presentation using MS-Powerpoint
 - 2.6 Computer virus
- 3.0 COMPUTER COMMUNICATION
 - 3.1 Communication protocol
 - 3.2 Internet basics
 - 3.3 Web page & idea about HTML & dream weaver

4.0 COMPUTER APPLICATION IN CERAMIC PRODUCT MAKING

- 4.1 Use of CAD in ceramic design
- 4.2 Basic ideas on CAM
- 4.3 Computer application inventory management & manpower management in ceramic industry .
- 4.4 Concept of interfacing for monitoring & control of temperature, Pressure, productivity ,heat flow
- 4.5 Use of flow chart histograms
- 5.0 ROBOTICS (General idea only)
 - 5.1 Robot anatomy
 - 5.2 Robot configuration
 - 5.3 Robot control system
 - 5.4 Robot programming & language
 - 5.5 Application of robotics in ceramic manufacturing a. In white ware industry
 - b. In glass industry
 - c. In refractory industry
 - 5.6 Use of ceramic components in computer manufacturing

BOOKS:

- 1 Automation , production & computer integrated manufacturing by Michell P. Grover
- 2 Computer fundamental by V. Rajaramana
- 3 Let us see by Yasvant Kanitkar
- 4 Computer genesis, programming and application by N. Subhramaniyan
- 5 Principles of electronic ceramic by L. L. Hench & West
- 6 Introduction to technical ceramics by B. E. Waye

Learning Resources:

Sl No	Author	Title of book	Publisher
1.	Michell P. Grover	Automation, production & computer	
		integrated manufacturing	
2.	V. Rajaramana	Computer fundamental	
3.	Yasvant Kanitkar	Let us see	
4.	N. Subhramaniyan	Computer genesis, programming and	
		application	
5.	L. L. Hench & West	Principles of electronic ceramic	
6.	B. E. Waye	Introduction to technical ceramics	

APPLIED ELECTRONICS AND CONTROL LAB

Name of the Course: Diploma in CERAMIC TECHNOLOGY			
Course code:	ETP 421	Semester	4^{th}
Total Period:	60	Examination	4 hrs
Lab. periods:	4 P/W	Term Work	25
Maximum marks:	50	End Semester Examination:	25

- 1. Study of different types of thermometer
- 2. Study of different types of Pressure Gauge
- 3. Study of Orifice Plate, Venturi meter, nozzles
- 4. Implementation of AND, OR, NAND, NOR, XOR, NOT gates and verification truth table.
- 5. Verification of R-S flip flop and J-K-flops.
- 6. Verification of performance of Mod-10 Counter
- 7. 4-bit up/down counters.
- 8. Study of 8085 based Microprocessor Kit.
- 9. Simple programs using 8085 microprocessor kit.
- 10. Study the performance of electronic on off temperature controller.

FUEL TESTING LAB

Name of the Course: Diploma in CERAMIC TECHNOLOGY			
Course code:	CTP 401	Semester	4^{th}
Total Period:	45	Examination	4 hrs
Lab. periods:	3 P/W	Term Work	25
Maximum marks:	50	End Semester Examination:	25

MINIMUM SIX NUMBER OF JOBS TO BE PRACTICED BY THE STUDENT

- Determine of proximate analysis of coal
 - (a) Moisture content.

1.

- (b) Volatile matters, Ash content.
- (c) Fixed carbon content etc.
- 2. Determination of calorific value of solid and liquid fuel.
- 3. Determination of viscosity of liquid fuels.
- 4. Determination of Density of liquid fuels.
- 5. Determination of flash point of liquid fuels.
- 6. Study of ORSAT apparatus.
- 7. Determination of fusion point of coal ash.
- 8. Study of thermo-couples pyrometer
- 9. Study of the operation of optical and radiation Pyrometers.
- 10. Study of Pyroscope such as segar cone & Orton cone etc.

CERAMIC WORKSHOP II LAB

Name of the Course: Diploma in CERAMIC TECHNOLOGY			
Course code:	CTP 402	Semester	4^{th}
Total Period:	75	Examination	4 hrs
Lab. periods:	5 P/W	Term Work	25
Maximum marks:	50	End Semester Examination:	25

MINIMUM TWELVE NUMBER OF JOBS FROM BOTH SECTION SHOULD BE PRACTICED BY THE STUDENT

(SECTION -A)

- 1. Preparation of refractory mixture for making the following standard bricks.
- 1. Acid Bricks Fireclay bricks by hand molding process
- 2. Basic Bricks Dolomite, Magnesite Preparation of body composition
- 3. Neutral Bricks fused Alumina
- 4. Preparation of Saggar body composition & making of Sagger by hand moding
- 5. Preparation of insulation bricks
- 6. Preparation of refractory cements and mortars.
- 7. Preparation of refractory crucibles.
- 8. Study of various refractory shapes used in furnace lining.
- 9. Preparation of cement castables
- 10. Preparation of ramming masses.
- 11. Firing of Fire clay bricks.
- 12. Preparation of Grog.

(SECTION – B)

- 1. Preparation of Cement concrete products.
- 2. Ferro cement Water Tank making
- 3. Ferro cement Roofing Sheet making
- 4. Concrete Block making
- 5 Preparation of Mosaic tiles.

- 7. Chalk crayons making
- 8. Preparation of cement clinker
- 9. Grinding of cement clinkers with other additives for making various types of cement

CERAMIC TESTING II LAB

Name of the Course: Diploma in CERAMIC TECHNOLOGY			
Course code:	CTP 403	Semester	4^{th}
Total Period:	75	Examination	4 hrs
Lab. periods:	5 P/W	Term Work	25
Maximum marks:	50	End Semester Examination:	25

MINIMUM TEN NUMBERS OF JOBS TO BE PRACTICED BY THE STUDENTS

A. TESTING OF REFRACTORIES

- 1. Grading of grog for refractories
- 2. Determine the physical properties refractory products.
- 3. Determine C.C.S.
- 4. Determine thermal expansion
- 5. Determine permeability
- 6. Determine PCE value
- 7. Testing of Castable refractories
- 8. Determine PLCR
- 9. Study of Mineralogical Microscope.
- 10. Preparation of sample to study under micro scope.

B. TESTING OF CEMENT

- 1. Determine consistency of cement.
- 2. Determine initial and final setting time of cement
- 3. Determine compressive strength of cement mortar.
- 4. Determine Tensile strength of cement concrete and mortar
- 5. Determine expansion of cement
- 6. Determine particle size of cement