CURRICULLUM OF 6TH SEMESTER

For

DIPLOMA IN MECHANICAL ENGINEERING(PT)

(Effective FROM 2020-21 Sessions)

STATE COUNCIL FOR TECHNICAL EDUCATION & VOCATIONAL TRAINING,

ODISHA, BHUBANESWAR

		STATE COUNCIL FOR TECH	INICAL	EDUCA	ATION A	ND VOCATIONAL	L TRAINING, O	ODISHA	
	TEA	ACHING AND EVALUATION SC	HEME	FOR 6t	h Semes	ter (Mechanical.)(P	art Time) (wef	f 2020-21)	
Subject	Subject Code	Subject	Pe	eriods/we	eek		Evaluatio	on Scheme	
Number			L	Т	Р	Internal Assessment/ Sessional	End Sem Exams	Exams (Hours)	Total
		Theory							
Th.1		Design of Machine elements	4		-	20	80	3	100
Th.2		Hydraulic Machines &Industrial Fluid Power	4		-	20	80	3	100
Th.3		Mechatronics	4	1		20	80	3	100
Th.4		Refrigeration and air- conditioning	4			20	80	3	100
		Total	16			80	320	-	400
		Practical							
Pr.1		Refrigeration and Air conditioning lab	-	-	4	50	100	3	150
Pr.2		Hydraulic machines &Industrial Fluid power lab	-	-	4	25	50	3	75
		Student Centered Activities (SCA)			3				
		Total	-	-	12	75	150	-	225
		Grand Total	16	1	12	155	470	-	625
		Abbreviations: L-Lecturer, T-Tu	utorial, P	-Practical	l. Each cla	ass is of minimum 55 n	ninutes duration		
		Minimum Pass Mark in each Theory sul	bject is 3	5% and in	n each Pra	ctical subject is 50% a	nd in Aggregate	is 40%	
SCA shall c	SCA shall comprise of Extension Lectures/ Personality Development/ Environmental issues /Quiz /Hobbies/ Field visits/ cultural activities/Library studies/Classes on MOOCS/SWAYAM etc. ,Seminar and SCA shall be conducted in a section.								
There shall b	There shall be 1 Internal Assessment done for each of the Theory Subject. Sessional Marks shall be total of the performance of individual different jobs/ experiments in a subject throughout the semester								

TH.1 DESIGN OF MACHINE ELEMENTS

Name of the Course: Diploma in MECHANICAL ENGINEERING					
Course code: Semester 5 th					
Total Period:	60	Examination	3 hrs.		
Theory periods:	4 P/W	I.A:	20		
Maximum marks:	100	End Semester Examination:	80		

A. RATIONALE:

Machine design is the art of planning or devising new or improved machines to accomplish specific purposes. Idea of design is helpful in visualizing, specifying and selection of parts and components which constitute a machine. Hence all mechanical engineers should be conversant with the subject.

B. COURSE OBJECTIVES

At the end of the course the students will be able to

- 1. Understanding the behaviours of material and their uses.
- 2. Understanding the design of various fastening elements and their industrial uses.
- **3.** Understanding the different failures of design elements.
- 4. Understanding the change of design to accomplish the different field of applications.
- 5. Design shafts, keys, couplings required for power transmission.
- 6. Design closed coil helical spring

C. CHAPTER WISE DISTRIBUTION OF PERIORDS

Sl.No.	Topic	Periods
01	INTRODUCTION	12
02	DESIGN OF FASTENING ELEMENTS	12
03	DESIGN OF SHAFT AND KEYS	12
04	DESIGN OF COUPLING	12
05	DESIGN OF CLOSED COIL HELICAL SPRING	12
	TOTAL	60

D. COURSE CONTENTS

1.0 Introduction:

- 1.1 Introduction to Machine Design and Classify it.
- 1.2 Different mechanical engineering materials used in design with their uses and their mechanical and physical properties.
- 1.3 Define working stress, yield stress, ultimate stress & factor of safety and stress –strain curve for M.S & C.I.
- 1.4 Modes of Failure (By elastic deflection, general yielding & fracture)
- 1.5 State the factors governing the design of machine elements.
- 1.6 Describe design procedure.

2.0 Design of fastening elements:

- 2.1 Joints and their classification.
- 2.2 State types of welded joints .
- 2.3 State advantages of welded joints over other joints.
- 2.4 Design of welded joints for eccentric loads.
- 2.5 State types of riveted joints and types of rivets.
- 2.6 Describe failure of riveted joints.
- 2.7 Determine strength & efficiency of riveted joints.
- 2.8 Design riveted joints for pressure vessel.
- 2.9 Solve numerical on Welded Joint and Riveted Joints.

3.0 Design of shafts and Keys:

- 3.1 State function of shafts.
- 3.2 State materials for shafts.
- 3.3 Design solid & hollow shafts to transmit a given power at given rpm based on
 - a) Strength: (i) Shear stress, (ii) Combined bending tension;
 - b) Rigidity: (i) Angle of twist, (ii) Deflection, (iii) Modulus of rigidity
- 3.4 State standard size of shaft as per I.S.
- 3.5 State function of keys, types of keys & material of keys.
- 3.6 Describe failure of key, effect of key way.
- 3.7 Design rectangular sunk key considering its failure against shear & crushing.
- 3.8 Design rectangular sunk key by using empirical relation for given diameter of shaft.
- 3.9 State specification of parallel key, gib-head key, taper key as per I.S.
- 3.10 Solve numerical on Design of Shaft and keys.

4.0 **Design of Coupling:**

- 4.1 Design of Shaft Coupling
- 4.2 Requirements of a good shaft coupling
- 4.3 Types of Coupling.
- 4.4 Design of Sleeve or Muff-Coupling.
- 4.5 Design of Clamp or Compression Coupling.
- 4.6 Solve simple numerical on above.

5.0 Design a closed coil helical spring:

- 5.1 Materials used for helical spring.
- 5.2 Standard size spring wire. (SWG).
- 5.3 Terms used in compression spring.
- 5.4 Stress in helical spring of a circular wire.
- 5.5 Deflection of helical spring of circular wire.
- 5.6 Surge in spring.
- 5.7 Solve numerical on design of closed coil helical compression spring.

Syllabus covered up to I.A-Chapters 1,2 &3

SL.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER
01	PANDYA AND SHAH	MACHINE DESIGN	CHAROTAR PP
02	R.S.KHURMI &J.K.GOPTA	A TEXT BOOK OF MACHINE DESIGN	S.CHAND
03	P.C.SHARMA &D.K AGRAWAL	A TEXT BOOK OF MACHINE DESIGN	S.K.KATARIY A
04	V.B.BHANDARI	DESIGNOF MACHINE ELEMENTS	ТМН
05	S.MD.JALAUDEEN	DESIGN DATA BOOK	ANURADHA PUBLICATIO N

LEARNING RESOURCES

TH.2 HYDRAULIC MACHINES &INDUSTRIAL FLUID POWER

Name of the Course: Diploma in MECHANICAL ENGINEERING					
Course code: Semester 5 TH					
Total Period:	60	Examination	3 hrs.		
Theory periods:	4 P/W	Class Test:	20		
Maximum marks:	100	End Semester Examination:	80		

A. RATIONALE:

Use of fluids can be realized by a group of machines called hydraulic machine and use of hydraulic control and pneumatic control system in automation and in earth movers.

B. COURSE OBJECTIVES:

At the end of the course the students will be able to

1. Distinguish the working principle of pumps and turbines

2.Explain the working of centrifugal pumps and gear pumps.

3.Compare pneumatic system with hydraulic system.

4. Draw pneumatic circuits for industrial application.

5. State the properties of hydraulic system.

6.Develop hydraulic circuit for machine tool operation.

C. CHAPTERWISE DISTRIBUTION OF PERIORDS.

SL.NO	TOPICS	PERIORDS
01	HYDRAULIC TURBINES	15
02	CENTRIFUGAL PUMPS	05
03	PNEUMATIC SYSTEM	20
04	HYDRAULIC SYSTEM	20
	TOTAL	60

D.COURSE CONTENTS

1.0 HYDRAULIC TURBINES.

- 1.1 Definition and classification of hydraulic turbines
- 1.2 Construction and working principle of impulse turbine.
- 1.3 Velocity diagram of moving blades, work done and derivation of various efficiencies of impulse turbine.
- 1.4 Velocity diagram of moving blades, work done and derivation of various efficiencies of Francis turbine.

- 1.5 Velocity diagram of moving blades, work done and derivation of various efficiencies of Kaplan turbine
- 1.6 Numerical on above
- 1.7 Distinguish between impulse turbine and reaction turbine.

2.0 CENTRIFUGAL PUMPS

- 2.1 Construction and working principle of centrifugal pumps
- 2.2 work done and derivation of various efficiencies of centrifugal pumps.
- 2.3 Numerical on above

3.0 RECIPROCATING PUMPS

- 3.1 Describe construction & amp; working of single acting reciprocating pump.
- 3.2 Describe construction & amp; working of double acting reciprocating pump.
- 3.3 Derive the formula foe power required to drive the pump (Single acting & amp; double acting)3.5 Define slip.

3.5 State positive & amp; negative slip & amp; establish relation between slip & coefficient of discharge.

3.6 Solve numerical on above

4.0 PNEUMATIC CONTROL SYSTEM

- 4.1Elements -filter-regulator-lubrication unit
- 4.2 Pressure control valves
 - 4.2.1 Pressure relief valves
 - 4.2.2 Pressure regulation valves
- 4.3 Direction control valves
 - 4.3.1 3/2DCV,5/2 DCV,5/3DCV
 - 4.3.2 Flow control valves
 - 4.3.3. Throttle valves
- 4.4 ISO Symbols of pneumatic components
- 4.5. Pneumatic circuits
 - 4.5.1 Direct control of single acting cylinder
 - 4.5.2 Operation of double acting cylinder
 - 4.5.3 Operation of double acting cylinder with metering in and metering out control

5.0 HYDRAULIC CONTROL SYSTEM

- 5.1 Hydraulic system, its merit and demerits
- 5.2 Hydraulic accumulators
 - 5.3.1 Pressure control valves
 - 5. 3.2 Pressure relief valves
 - 5.3.3 Pressure regulation valves
- 5.3 Direction control valves 5.3.1 3/2DCV,5/2 DCV,5/3DCV

- 5.3.2 Flow control valves
- 5.3.3 Throttle valves
- 5.4 Fluid power pumps
 - 5.4.1 External and internal gear pumps
 - 5.4.2 Vane pump
 - 5.4.3 Radial piston pumps
- 5.5 ISO Symbols for hydraulic components.
- 5.6 Actuators
- 5.7 Hydraulic circuits
 - 5.7.1 Direct control of single acting cylinder
 - 5.7.2 Operation of double acting cylinder
 - 5.7.3 Operation of double acting cylinder with metering in and metering out control
- 5.8 Comparison of hydraulic and pneumatic system

Syllabus to be covered up to I.A –CHAPTER 1.,2, &3

LEARNING RESOURCES

SL.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER
01	DR.JAGDISH LAL	HYDRAULIC MACHINES	METROPOLITAN
			BOOK CO
02	ANDREW	HYDRAULICS	
03	K SHANMUGA,	HYDRAULIC & PNEUMATIC	S.CHAND
	SUNDARAM	CONTROL	
04	MAJUMDAR	HYDRAULIC & PNEUMATIC	TMH
		CONTROL	
05	J.F. BLACKBURN,	FLUID POWER CONTROL	
	G.REETHOF &J.L		
	SHEARER		

TH.3 MECHATRONICS

Name of the Course: Diploma in Mechanical Engg.					
Course code:		Semester	5th		
Total Period:	60+15(T)	Examination	3 hrs.		
Theory periods:	4 P/W	I.A:	20		
Maximum marks:	100	End Semester	80		
		Examination:			

A. RATIONALE:

Day by day, engineering and technology experiences a tremendous growth. Mechatronics plays a major role in developing engineering and technology. It can be defined as the applications of electronics and computer technology to control the motions of mechanical systems. With the help of microelectronics and sensor technology, mechatronics systems are providing high levels of precision and reliability.

B. COURSE OBJECTIVES:

At the end of the course the students will be able to

- 1. To study the definition and elements of mechatronics system.
- 2. To learn how to apply the principle of mechatronics for the development of productive systems.
- 3. To learn the CNC technology and applications of mechatronics in manufacturing automation.
- 4. Define different type of system and Sensors and solve the simple problems.
- 5. Explain the concept of Mechanical actuation, Electrical actuation and solve the simple problems.
- 6. Find out the various types of System Models & Input /Output parts and solve the problems.
- 7. Describe the programmable Logic Controller and develop programme in PLC.
- 8. To learn the Industrial robotics

C. CHAPTERWISE DISTRIBUTION OF PERIORDS

SI No.	Торіс	Periods
01	Introduction to Mechatronics	05
02	Sensors and Transducers	10
03	Actuators-Mechanical, Electrical	10
04	Programmable logic controllers	15
05	Elements of CNC Machines	15
06	Robotics	05

D.COURSE CONTENTS

1.0 INTRODUCTION TO MECHATRONICS

- 1.1 Definition of Mechatronics
- 1.2 Advantages & disadvantages of Mechatronics
- 1.3 Application of Mechatronics
- 1.4 Scope of Mechatronics in Industrial Sector
- 1.5 Components of a Mechatronics System
- 1.6 Importance of mechatronics in automation

2.0 SENSORS AND TRANSDUCERS

- 2.1Defination of Transducers
- 2.2 Classification of Transducers
- 2.3 Electromechanical Transducers
- 2.4 Transducers Actuating Mechanisms
- 2.5 Displacement & Positions Sensors
- 2.6 Velocity, motion, force and pressure sensors.
- 2.7 Temperature and light sensors.

3.0 ACTUATORS-MECHANICAL, ELECTRICAL

- **3.1Mechanical Actuators**
 - 3.1.1 Machine, Kinematic Link, Kinematic Pair
 - 3.1.2 Mechanism, Slider crank Mechanism
 - 3.1.3 Gear Drive, Spur gear, Bevel gear, Helical gear, worm gear
 - 3.1.4 Belt & Belt drive
 - 3.1.5 Bearings
- 3.2 Electrical Actuator
 - 3.2.1 Switches and relay
 - 3.2.2 Solenoid
 - 3.2.3 D.C Motors
 - 3.2.4 A.C Motors
 - 3.2.5 Stepper Motors
 - 3.2.6 Specification and control of stepper motors
 - 3.2.7 Servo Motors D.C & A.C

4.0 PROGRAMMABLE LOGIC CONTROLLERS(PLC)

- 4.1 Introduction
- 4.2 Advantages of PLC
- 4.3 Selection and uses of PLC
- 4.4 Architecture basic internal structures
- 4.5 Input/output Processing and Programming
- 4.6 Mnemonics

4.7 Master and Jump Controllers

5.0 ELEMENTS OF CNC MACHINES

5.1 Introduction to Numerical Control of machines and CAD/CAM

5.1.1 NC machines

5.1.2 CNC machines

5.1.3.CAD/CAM

5.1.3.1 CAD

5.1.3.2 CAM

5.1.3.3 Software and hardware for CAD/CAM

5.1.3.4 Functioning of CAD/CAM system

5.1.3.4 Features and characteristics of CAD/CAM system

5.1.3.5 Application areas for CAD/CAM

5.2 elements of CNC machines

5.2.1 Introduction

5.2.2 Machine Structure

5.2.3 Guideways/Slide ways

5.2.3.1 Introduction and Types of Guideways

5.2.3.2 Factors of design of guideways

5.2.4 Drives

5.2.4.1 Spindle drives

5.2.4.2 Feed drive

5.2.5 Spindle and Spindle Bearings

6.0 ROBOTICS

6.1 Definition, Function and laws of robotics

6.2Types of industrial robots

6.3 Robotic systems

6.4 Advantages and Disadvantages of robots

Syllabus to be covered up to 1st I.A : Chapters 1,2,3 & 4

LEARNING RESOURCES:

SL.NO.	AUTHOR	TITLE OF THE BOOK	PUBLISHER
1	W. Bolton	Mechatronics	Pearson Education
			India
2	R.K Rajput	Text book of Mechatronics	S. Chand
3	R.	CAD/CAM/CIM	NEW AGE
	RADHAKRISHNA,		INTERNATIONAL
	S,SUBRAMANIAN		PVT.LTD
4	MIKELL GROVER	CAD/CAM	

Th.4 REFRIGERATION AND AIR CONDITIONING

Name of the Course: Diploma in MECHANICAL ENGINEERING					
Course code: Semester 5 th					
Total Period:	60	Examination	3 hrs		
Theory periods:	4 P/W	I.A:	20		
Maximum marks:	100	End Semester Examination:	80		

A. RATIONALE:

Food Preservation is the basic need of food industry to improve effective utilization of food. Hence the study of Refrigeration and Air-conditioning is essential. Comfort is the basic requirement of customers and machines through air conditioning & hence learning the concept of air-conditioning and methods of air-conditioning facilities quality design of air conditioning.

B. COURSE OBJECTIVE:

At the end of the course the students will be able to

1.Explain the working of open & closed air system of air refrigeration system

2.Describe the working and construction of compressor, Condenser, evaporator, expansion valve used for

air conditioning and refrigeration.

3. Explain Vapor Compression refrigeration system.

4. Explain Vapor Absorption refrigeration system.

5.Compare different refrigerants properties.

6.Describe equipment for air conditioning.

7.Explain the cooling load for the given requirement.

C. CHAPTER WISE DISTRIBUTION OF PERIODS

Sl.No.	Торіс	Periods
01	AIR REFRIGERATION CYCLE	05
02	SIMPLE VAPOUR COMPRESSION REFRIGERATION SYSTEM	10
03	VAPOUR ABSORPTION REFRIGERATION SYSTEM	07
04	REFRIGERATION EQUIPMENTS	08
05	REFRIGERANT FLOW CONTROLS, REFRIGERANTS & APPLICATION OF REFRIGERANTS	10
06	PSYCHOMETRICS & COMFORT AIR CONDITIONING SYSTEMS	10
07	AIR CONDITIONING SYSTEMS	10
	TOTAL	60

D.COURSE CONTENTS

1.0 AIR REFRIGERATION CYCLE.

- 1.1 Definition of refrigeration and unit of refrigeration.
- 1.2 Definition of COP, Refrigerating effect (R.E)
- 1.3 Principle of working of open and closed air system of refrigeration.
 - 1.3.1 Calculation of COP of Bell-Coleman cycle and numerical on it.

2.0 SIMPLE VAPOUR COMPRESSION REFRIGERATION SYSTEM

2.1 schematic diagram of simple vapors compression refrigeration system' 2.2 Types

- 2.2.1 Cycle with dry saturated vapors after compression.
- 2.2.2 Cycle with wet vapors after compression.
- 2.2.3 Cycle with superheated vapors after compression.
- 2.2.4 Cycle with superheated vapors before compression.
- 2.2.5 Cycle with sub cooling of refrigerant

2.2.6 Representation of above cycle on temperature entropy and pressure enthalpy diagram

2.2.7 Numerical on above (determination of COP,mass flow)

3.0 VAPOUR ABSORPTION REFRIGERATION SYSTEM

- 3.1 Simple vapor absorption refrigeration system
- 3.2 Practical vapor absorption refrigeration system
- 3.3 COP of an ideal vapor absorption refrigeration system
- 3.4.Numerical on COP.

4.0 REFRIGERATION EQUIPMENTS

4.1 REFRIGERANT COMPRESSORS

4.1.1 Principle of working and constructional details of reciprocating and rotary compressors.

- 4.1.2 Centrifugal compressor only theory
- 4.1.3 Important terms.
- 4.1.4 Hermetically and semi hermetically sealed compressor.

4.2 CONDENSERS

- 4.2.1 Principle of working and constructional details of air cooled and water cooled condenser
- 4.2.2 Heat rejection ratio.
- 4.2.3 Cooling tower and spray pond.

4.3 EVAPORATORS

- 1.6.1 Principle of working and constructional details of an evaporator.
- 1.6.2 Types of evaporator.

1.6.3 Bare tube coil evaporator, finned evaporator, shell and tube evaporator.

5.0 REFRIGERANT FLOW CONTROLS, REFRIGERANTS & APPLICATION OF REFRIGERANTS

5.1 EXPANSION VALVES

- 5.1.1 Capillary tube
- 5.1.2 Automatic expansion valve
- 5.1.3 Thermostatic expansion valve

5.2 REFRIGERANTS

- 5.2.1 Classification of refrigerants
- 5.2.2 Desirable properties of an ideal refrigerant.
- 5.2.3 Designation of refrigerant.
- 5.2.4 Thermodynamic Properties of Refrigerants.
- 5.2.5 Chemical properties of refrigerants.
- 5.2.6 commonly used refrigerants, R-11, R-12, R-22, R-134a, R-717
- 5.2.7 Substitute for CFC
- 5.3 Applications of refrigeration
 - 5.3.1 cold storage
 - 5.3.2 dairy refrigeration
 - 5.3.3 ice plant
 - 5.3.4 water cooler
 - 5.3.5 frost free refrigerator

6.0 PSYCHOMETRICS & COMFORT AIR CONDITIONING SYSTEMS

- 6.1 Psychometric terms
- 6.2 Adiabatic saturation of air by evaporation of water
- 6.3 Psychometric chart and uses.
- 6.4 Psychometric processes
 - 6.4.1 Sensible heating and Cooling
 - 6.4.2 Cooling and Dehumidification
 - 6.4.3 Heating and Humidification
 - 6.4.4 Adiabatic cooling with humidification
 - 6.4.5 Total heating of a cooling process
 - 6.4.6 SHF, BPF,
 - 6.4.7 Adiabatic mixing
 - 6.4.8 Problems on above.
- 6.5 Effective temperature and Comfort chart

7.0 AIR CONDITIONING SYSTEMS

- 7.1 Factors affecting comfort air conditioning. .
- 7.2 Equipment used in an air-conditioning.
- 7.3 Classification of air-conditioning system
- 7.4 Winter Air Conditioning System
- 7.5 Summer air-conditioning system.
- 7.6 Numerical on above

Syllabus to be covered up to I.A- Chapters1.2&3.

LEARNING RESOURCES

SL.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHER
01	C.P ARRORA	REFRIGERATION AND AIR CONDITIONING	ТМН
02	R.S.KHURMI &J.K.GOPTA	REFRIGERATION AND AIR CONDITIONING	S.CHAND
03	P.L BALLANY	REFRIGERATION AND AIR CONDITIONING	KHANNA PUBLISHER
04	DOMKUNDRA AND ARORA	REFRIGERATION AND AIR CONDITIONING	DHANPAT RAY AND SONS

Pr.1 REFRIGERATION AND AIR CONDITIONING LAB

Name of the Course: Diploma in Mechanical Engg.				
Course code:		Semester	5th	
Total Period:	75	Examination	3 hrs	
Theory periods:	5 P/W	Sessional:	25	
Maximum marks:	100	End Semester	50	
		Examination:		

COURSE OBJECTIVES

At the end of the course the students will be able to

1.Study the construction features of Domestic Refrigerator, water cooler, Window Air

Conditioner, Split Air Conditioner

2. Determining the capacity, COP, of Refrigerator Test Rig, Window air Conditioner, Split Air

Conditioner, Water cooler.

3. Evacuating the entire system

4.Locating the leakage in refrigerating system

5. Charging of the refrigerating system

List of Practicals

- 1. Study the construction features of Domestic Refrigerator.
- 2. Study the construction features of water cooler.
- 3. Study the construction features of window air conditioner
- 4. Study the construction features of split air conditioner
- 5.Determine the capacity and cop of vapour compression Refrigerator test rig

6.Determine the capacity and cop of water cooler

- 7.Determine the capacity and cop of window air conditioner
- 8. Determine the capacity and cop of split air conditioner
- 9. Determine the capacity and cop of vapour absorption Refrigerator test rig.
- 10.Complete charging of a domestic refrigerator and its leak test.

Pr 2. HYDRAULIC MACHINES &INDUSTRIAL FLUID POWER LAB

Name of the Course: Diploma in Mechanical Engg.				
Course code:		Semester	5th	
Total Period:	60	Examination	3 hrs.	
Theory periods:	4 P/W	Sessional:	25	
Maximum marks:	100	End Semester	50	
		Examination:		

COURSE OBJECTIVES

At the end of the course the students will be able to

- 1.0 Conducting performance test on impulse and reaction turbine
- 2.0 Conducting performance test on centrifugal pump
- 3.0 Designing & operating pneumatic circuits
- 4.0 Designing & operating industrial fluid power circuits

List of Practicals

- 1.0 Performance test on impulse turbine and to find out the efficiency
- 2.0 Performance test on Kaplan turbine and to find out the efficiency
- 3.0 Performance test on Francis turbine and to find out the efficiency
- 4.0 Performance test on centrifugal pump and to find out the characteristic curves
- 5.0 Direct operation of single &double acting pneumatic cylinder.
- 6.0 Operating double acting pneumatic cylinder with quick exhaust valve
- 7.0 Speed control double acting pneumatic cylinder using metering in and metering out circuits.
- 8.0 Direct operation of single &double acting hydraulic cylinder
- 9.0 Direct operation of hydraulic motor
- 10.0 Speed control double acting hydraulic cylinder using metering in & metering out circuits.

EQUIPMENT LIST

REFRIGERATION AND AIR – CONDITIONING LAB

SL.NO	NAME OF THE EQUIPMENTS	QUANTITY
01	Domestic Refrigerator test rig	01 no
02	water cooler test rig	01 no
03	Window Air Conditioner test rig	01 no
04	Split Air Conditioner test rig	01 no
05	Vacuum pump set with accessories	01 no
06	Charging cylinder with accessories	02 nos
07	Halide torch or any leak tester	02 nos
08	Vapour absorption test rig	01

HYDRAULIC MACHINES & INDUSTRIAL FLUID POWER LAB

SL.NO	NAME OF THE EQUIPMENTS	QUANTITY
01	Impulse turbine(PELTON WHEEL) Test Rig with arrangements to find	01no
	efficiency	
02	Kaplan turbine Test Rig with arrangements to find efficiency	01no
03	Francis turbine Test Rig with arrangements to find efficiency	01no
04	Centrifugal pump Test Rig with arrangements to find efficiency	01no
05	Pneumatic Trainer Kit with accessories	02nos
06	Hydraulic Trainer Kit with accessories	01no
07	Manual or Digital Tachometer	05nos