Subject Number	Subject	Subject	Periods/week		Evaluation Scheme				
	Code		L	Т	P	Internal Assessment/ Sessional	EndSe m Exams	Exams (Hours)	Total
		Theory					•	•	
Th.1		Organic Chemistry(C)	3	1	-	20	80	3	100
Th.2		Food Microbiology	3	1	-	20	80	3	100
Th.3		Fluid Mechanics and Heat Transfer	3	1	-	20	80	3	100
Th.4		Food chemistry	4	-	-	20	80	3	100
		Total	13	3	-	80	320	-	400
		Practical							
Pr.1 Organic Chemistry Laboratory		Organic Chemistry Laboratory(c)	-	-	5	50	50	4	75
Pr.2		Food Microbiology Laboratory	-	5 50		50	50	4	75
Pr.3		Fluid Mechanics and Heat Transfer Laboratory	5		50	50	4	75	
Pr.4		Food chemistry Laboratory	-	-	5	25	25	4	50
		Student Centered Activities(SCA)	-	-	3	-	-	-	-
		Total	-	-	23	175	175	-	350
		Grand Total	13	3	23	255	495	-	750
	Abb	reviations: L-Lecturer, T-Tutorial, P-Prac	ctical . Ea	ch class	s is of m	inimum 55 minute	es duration	1	
		Mark in each Theory subject is 35% a							
CA shall comprise	e of Extensio	on Lectures/ Personality Development	/ Enviro	nmenta	issues	/Quiz /Hobbies/	Field visi	ts/ cultural act	ivities/Libra

Th-1 ORGANIC CHEMISTRY

Common to Chemical, Biotechnology & Food Technology

Theory:4 Periods per Week	Internal Assessment: 20 Marks
Total periods:60 Periods	Term End Examination: 80 Marks
Examination: 3 Hours	Total Marks: 100 Marks

Rationale:

Study of organic chemistry as a separate subject is more practical and fruitful. The knowledge of structure and function of a large no. of compounds built of relatively few elements is important for future food-technologist.

Objective:

On completion of study of Organic Chemistry, the student will be able to:

- 1. Name organic compound in IUPAC system
- 2. Understand the concept of isomerisation
- 3. Acquaint themselves with methods preparation, properties and use of common aromatic and aliphatic compounds.
- 4. Acquire knowledge carbohydrates, proteins and amino acids.

Topic wise distribution of periods

SI. No.	Topics	Periods
1	Nomenclature	08
2.	Aliphatic Compounds	20
3.	Aromatic Compounds	09
4.	Carbohydrates, Proteins & fats	23
	Total	60

COURSE CONTENT

1.0 IUPAC NOMENCLATURE

- 1.1 Scope of organic chemistry
- 1.2 Differentiate organic compound and inorganic compounds
- 1.3 Importance of organic Chemistry in modern life.
- 1.4 Classification and sources of organic compounds
- 1.5 IUPAC naming of mono functional and poly functional Organic Compound.
- 1.6 Concept, type and example of isomerism

2.0 ALIPHATIC COMPOUNDS

- 2.1 Methods of preparations, properties and uses of CH_4 and C_2H_5 .
- 2.2 Methods of preparations properties of ethylene.
- 2.3 Methods of preparation, properties and uses of acetylene.
- 2.4 Methods of preparation properties and uses of methanol and ethanol.
- 2.5 Absolute alcohol and denatured alcohol.
- 2.6 Methods of preparation properties and uses of formic acid and acetic acid.
- 2.7 Methods of preparation properties and uses of formaldehyde and acetone.

3.0 AROMATIC COMPOUNDS

- 3.1 Methods of preparation, properties and uses of
 - (a) Benzene (b) Toluene
- 3.2 Methods of preparation, properties and uses of Benzene derivative compound
 - (a) Phenol (b) Benzaldehyde

4.0 CARBOHYDRATES, PROTEINS & FATS

- 4.1 Classification of carbohydrates
- 4.2 Synthesis and inter conversions of monosaccharides
- 4.3 Manufacturing properties and uses of glucose, fructose, sucrose, and starch.
- 4.4 Preparation, properties and uses of Amino acid
- 4.5 Classification of proteins, Peptides
- 4.6 Properties and uses of proteins.

•

4.7 Sources, Properties and uses of fats.

Syllabus Coverage up to I.A

Chapter 1,2,3

SI No	Author	Title	Publication
1	B.S. Bahl, Arun Bahl	A Text Book of Organic Chemistry	S. Chand

Theory: 4 Periods per Week	Internal Assessment: 20 Marks
Total periods: 60 Periods	Term End Examination: 80 Marks
Examination: 3 Hours	Total Marks: 100

Th-2 FOOD MICROBIOLOGY

Rationale :

There are enormous annual issues of food materials, throughout the world, which are attributable directly to spoilage by the action of "micro-organisms". Such losses may have far reaching economic and political results as for example, the great potato blight in Ireland during the nineteenth century.

Many bacteria, fungi and viruses cause floor poisoning infections and information which may vary in severity from the very mild to the fatal. Food commodities such as bread, fermented milk and vegetables and alcoholic beverages have a significant place in the diet of today Knowledge of the organisms respon for such products is essential to improve or control the quality of such foods. Newer foods and food processes may depend on the use of micro-organisms, the production of "single cell" protein and fermented foods being typical examples. Additionally, the use of micro-organisms for the utilization of food processing waste and the greatly the food industry on economic grounds and the community at large on ecological grounds. An application of microbiology is therefore essential to food technologist if they are to control or exploit the natural metabolic to the community.

SI. No.	Topics	Periods
1	Introduction	10
2.	Culture Method	10
3.	Microscopy	05
4.	Morphology	05
5.	Physiology	15
6.	Growth & inhibition	15
	Total	60

Topic wise distribution of periods

CONTENTS: Theory

SI. No.	Name of the Topics		
1	INTRODUCTION 1.1 History of microbiology, micro-organisms and men 1.2 Classification of micro-organisms : Bacteria, Yeast, Fungi, Algae, Protozoa, Viruses		
2.	CULTURE METHODS 2.1 Methods of isolation of pure culture, Media preparation, Culture maintenance media 2.2 Techniques of culturing, asepsis		
3.	MICROSCOPY 3.1 Microscope, Different types of microscopes methods of microscopic examination 3.2 Staining techniques		
4.	 4. MORPHOLOGY 4.1 Morphological and cultural characteristics of bacteria and fungi 4.2 Vegetative cells, spores, motility 		
5.	PHYSIOLOGY 5.1 Physiology of micro-organisms 5.2 Autotrophs & Heterotrophs, chemosynthetic, saprophytes & parasites, Aerobes & Anaerobes, microaerophilic, psychrophiles, mesophiles and thermophiles.		
6.	 GROWTH & INHIBITION 6.1 Factors affecting growth and death, Cell division, Budding, Sporulation, Fragmentation 6.2 Growth optima, Phases of growth 6.3 Control of Microbial spoilage by various food preservation methods(Low temperature, high temperature, irradiation, dehydration, chemicals) in fruit & vegetables. 		

Syllabus Coverage up to I.A

Chapter 1,2,3,4

SI No	Author	Title	Publication
1	W.C.Frazier & D.C.Westhoff ,TMH, New York	Food Microbilogy	
2	James Jay ,CBS, New Delhi	Modern Food Microbilogy	
3	G. J. Banwart	Basic Food Microbilogy	

Th 3 FLUID MECHANICS & HEAT TRANSFER

Theory:4 Periods per Week	Internal Assessment:	20 Marks
Total periods: 60 Periods	Term End Examination:	80 Marks
Examination: 3 Hours	Total Marks:	100

Rationale :

Fluid statics, fluid flow phenomena, flow measurement, fluid flow through pipe lines, fluidized bed etc. in an industry are essentially important. There are many unit processes particularly in chemical, petrochemical, pharmaceutical, hydro-metallurgical etc. plants in which fluid flow phenomena are of fundamental importance in design consideration. It is therefore, necessary for an engineer planning career in chemical, petrochemical etc. industries to study fluid flow phenomena, selection of the characteristics of different fluid transportation and flow control devices.

Objectives: On completion of studies of fluid mechanics the student will be able to (i) Distinguish the fundamental and derived units, derived dimensional formula of various physical quantities

- (ii) Understand and explain between fluid statics and fluid dynamics
- (iii) Solve problems on flow measurement, Bernoulli's equation etc.
- (iv) Acquaint themselves with various kinds of pumps, blowers & fans
- (v) Understand various fluid properties like density, viscosity and critical velocity, Reynolds number etc.
- (vi) Acquire problem solving skill and improvisation of the process.

Topic wise distribution of periods

SI. No.	Topics	Periods
1	INTRODUCTION TO FLUID STATICS	10
2.	FLUID FLOW PHENOMENA AND	10
	FLUIDISATION	
3.	FLOW MEASUREMENT AND	10
	TRANSPORTATION OF FLUID	
4.	CONDUCTION	10
5.	CONVECTION	10
6.	HEAT EXCHANGERS AND	10
	EVAPORATORS	
	TOTAL	60

Contents:

1.0 INTRODUCTION TO FLUID STATICS

- 1.1 Classify fluid
- 1.2 Properties of fluid
- 1.3 Newton's Law of viscosity
- 1.4 Differentiate Newtonian & Non-Newtonian fluid
- 1.5 Derive an equation of pressure head.

2.0 FLUID FLOW PHENOMENA AND FLUIDISATION

- 2.1 Types of flow
- 2.2. Reynolds's experiment
- 2.3 Mechanism of fluid flow in pipes
- 2.4 Derived Bernoulli's theorem
- 2.5 Friction factor and estimate friction loss in pipes
- 2.6 Fluidisation
- 2.7 Pressure drop equation in fluidised bed.
- 2.8 Fluid flow characteristic in packed bed.

3.0 FLOW MEASUREMENT AND TRANSPORTATION OF FLUID

- 3.1 Flow measurement and Transportation of fluid.
- 3.2 Fluid flow through orifice meter, venturi meter and derive an expression for flow measurement, solve simple problems on it.
- 3.3 Construction and working of rotameter.
- 3.4 Differentiate pipe and tube.
- 3.5 Standard pipe fittings
- 3.6 Construction and operation of different types of valves.
- 3.7 Classify pumps.
- 3.8 Construction and operation of centrifugal pump.

4.0 CONDUCTION

- 4.1 Heat low concept in conduction.
- 4.2 Steady state and unsteady state conduction.
- 4.3 Fourier's law of conduction.
- 4.4 Derive an equation of hear flow in a composite wall and a cylinder.
- 4.5 Optimum thickness of insulation.
- 4.6 Solve problems on conduction.
- 5.0 CONVECTION

- 5.1 Classify convection
- 5.2 Heat flow phenomenon in convection
- 5.3 Derive equation of individual and overall heat transfer co-efficient.
- 5.4 Different dimensionless no. used in convection and discuss different empirical equation on heat flow by convection.
- 5.5 Parallel, co-current and counter current flow.
- 5.6 Log mean temperature difference.

6.0 HEAT EXCHANGERS AND EVAPORATORS

- 6.1 Classify heat exchanger.
- 6.2 Construction and working of single pass, and multipass, shell and tube heat exchangers.
- 6.3 Energy balance for shell and tube heat exchanger and solve problems.
- 6.4 Classify evaporator
- 6.5 Construction and operation of different types of evaporators
- 6.6 Solve simple material balance and energy balance problems

Syllabus Coverage up to I.A

Chapter 1,2,3,4

SI No	Author	Title	Publication
1	Macable & J.M.Smith	'Unit operation for Chemical Engineers'	McGraw-Hill
2	Badgero and Banchero	Introduction to Chemical Engineering	McGraw-Hill
3	Ghosh, Sanyal and Dutta	Introduction to Chemical Engineering	McGraw-Hill
4	Richardson & Coulson.	Chemical Engineering Vol.II	

Th-4 FOOD CHEMISTRY

Theory: 4 Periods per Week	Internal Assessment: 20 Marks
Total periods:60 Periods	Term End Examination: 80 Marks
Examination: 3 Hours	Total Marks: 100 Marks

Rationale :

Food chemestry has its roots in fermentation, Nutrition, Agriculture, Medicine and Natural products. Today, it is principally concerned with the chemistry of molecules found in and associated with living system especially the chemistry of the interaction of this molecule. Developing this understanding has required the careful application of physical & chemical laws and methods in combination with the careful biological manipulation of the system under study. Several modern biochemical approaches take advantage of technology advances to study intact system.

Topics	Hours
1.0 Carbohydrate	10
2.0 Proteins	10
3.0 Lipids	10
4.0 Vitamins	05
5.0 Enzymes	05
6.0 Metabolism of Carbohydrates	05
7.0 Metabolism of lipids	05
8.0 Metabolism of proteins	05
9.0 Minerals	05
Total	60

Topic wise distribution of periods

Topics		
10.0	Carbo	phydrate
	10.1	Introduction
	10.2	Structure
	10.3	Classification and general properties of sugar(physical and chemical)
	10.4	Physiological functions of carbohydrates

11.0	Prote	ins			
_	11.1	Introduction			
	11.2	Amino Acid sequence in proteins			
	11.3	Physical and Chemical Properties of amino acids and proteins			
	11.4	Food protein and their characteristics			
12.0	Lipids	3			
	12.1	Introduction			
	12.2	12.2 Classification of Lipids.			
	12.3	Acid number, iodine value, acetyl value, Reichert-Meissl number			
	12.4	Hydrolytic and oxidative rancidity, preservation of rancidity, reversion			
13.0	Vitam	ine			
13.0	13.1	Occurrence, Chemistry, Classification			
	13.2	Deficiency diseases and high intakes			
14.0	Enzyr				
	14.1	Classification and nomenclature,			
	14.2				
	14.3				
		incentration on the rate of enzyme reaction.			
	14.4	Specificity of enzyme, enzyme inhibition, kinetics of enzyme action,			
	ac	tivation of enzymes			
	14.5	Functions of enzymes involved in digestion.			
15.0	Metab	oolism of Carbohydrates			
	15.1	Embolden Meyer Hoff pathway			
	15.2	Kerb's Cycle			
	15.3	Glycogenesis, Glycogenolysis, Gluconeogenesis			
16.0		oolism of lipids			
	16.1	Digestion and absorption of lipids			
17.0		oolism of proteins			
	17.1	Nitrogen pool, nitrogen balance			
	17.2	Evaluate quality of proteins			
	17.3	Metabolism of proteins and amino acids.			
18.0	Miner				
	18.1	Macronutrients			
	18.2	Micronutrients			
<u>Sy</u>	<u>llabus</u>	Coverage up to I.A			

Chapter 1,2,3,4,5

SI No	Author	Title	Public	ation
1	M.A.Siddiqi & A.Q.	Hand Book of Biochemistry	Unique	offset
	Siddiqi,		Press	
2	A.Lehninger	Text Book of Biochemistry		
3	Eric E. Con	Outlines of Biochemistry		

Pr-1 ORGANIC CHEMISTRY LABORATORY

Common to Chemical, Biotechnology & Food Technology

Name of the Course: Diploma in Food Technology			
Total period 75 Examination 3hrs			
Lab periods	5p/week	Internal	50
		assessment	
Maximum Marks	100	End Semester	50
		Exam.	

SI. No.	List of Experiments		No. of Periods	
1.	Dete	ct the following elements in the organic compound	30	
	i)	Nitrogen		
	ii)	Sulphur		
	iii)	Halogen		
2.	Dete	rmine different functional groups of	30	
	i)	Carboxylic group		
	ii)	Phenolic group		
	iii)	Alcoholic group		
	iv)	Aldehyde group		
	V)	Ketonic group		
3.	Prep	are in Laboratory	15	
	(i) Oxalic acid (ii) Benzoic acid (iii) Methyl Orange		

SI No	Author	Title	Publication
1	Dr S K Nayak,	Practical Chemistry for +2 students	ABC Publication
2	O.P. Pandey D.N. Bajpai	Practical Chemistry for B.Sc Students	S Chand

Pr-2 FOOD MICROBIOLOGY LABORATORY

Name of the Course: Diploma in food Technology			
Course period		Semester	3rd
Total period	75	Examination	3hrs
Lab periods	5p/week	Internal	50
Maximum Marks	100	assessment End Semester	50
	100	End Semester Exam.	50

Sr No.	Content	No of periods
1	Study of Microscope and their parts.	05
2	Straining of Bacteria and observe size , motility,	05
	metachromatic granular and spores.	
3	Morphology of Bacteria , moulds, yeasts	10
4	Prepare nutrition growth and media with agar, gelatine	05
	and special media for culture of microbes.	
5	Sterilisation of glassware and media.	05
6	Isolate pure culture from water, milk,. Fruit juice, fish,	05
	meat etc.	
7	Determine bacterial species .	10
8	Determine thermal death time.	05
9	Methylene blue reduction test.	05
10	Bacteriological examination of water and milk.	10
11	Quality assessment of processed food.	05
12	Isolate the faecal coliform from sewage water and	05
	determine the MPN(most probable No.)of sample	

Pr-3 FLUID MECHANICS AND HEAT TRANSFER LABORATORY

Name of the Course: Diploma in food Technolohy			
Course period		Semester	3rd
Total period	75	Examination	3 hours
Lab periods	5p/week	Internal	50
		assessment	
Maximum Marks	100	End Semester	50
		Exam.	

List of experiments :

Sr. No.	Name of experiment	No of Periods
1	Demonstrate operation of Reynolds's apparatus and find out critical velocity	10
2	Verify Bernoulli's equation	10
3	Demonstrate operation of venturi meter and determine the venturi co-efficient	10
4	Demonstrate operation of Orifice meter and determine the Orifice co-efficient	10
5	Demonstrate operation of a Rotameter and determine rate of flow through Rotameter	05
6	Demonstrate operation of a centrifugal pump	05
7	Demonstrate operation of a fluidized bed column packed bed column	05
8	Demonstrate heat transfer through composite wall and find the resistance of wall	05
9	Demonstrate operation of multi pass, horizontal hear exchanger and determine H & U	05
10	Demonstrate heat transfer in forced convection	05
11	Study of valves & pipe fittings	05

Pr-4 FOOD CHEMISTRY LABORATORY

Name of the Course: Diploma in Food Technology				
Course period Semester 3rd			3rd	
Total period	75	Examination	3 hours	
Lab periods	5p/week	Internal	25	
		assessment		
Maximum Marks	50	End Semester	25	
		Exam.		

SI.No.	Name of Experiment	No. of
		periods
1	Determination of moisture content.	03
2	Detection of reducing sugar by Fehling and Benedict test.	03
3	Quantitative determination of reducing sugar by Lane and Eynon method.	03
4	Determination of fibre content of different food material and compare them.	03
5	Detection of amino acid, protein and peptides by Ninhydrin test.	06
6	Determination of protein quantity by Kjeldahl method.	06
7	Determination of acid test.	03
8	Extraction of fat by Soxhelet apparatus.	06
9	Determination of Ash content.	03
10	Detection of presence of starch by lodine test.	03
11	Determination of water activity of different food materials.	03
12.	To distinguish between mono-saccharides and di-saccharides of Barfoed	03
	test.	