STATE COUNCIL FOR TECHNICAL EDUCATION AND VOCATIONAL TRAINING, ODISHA									
TEACHING AND EVALUATION SCHEME FOR 4th Semester (Mechanical Engg. (Production)) (wef. 2019-20)									
Subject	Subject	Subject	Pei	riods/w	eek		Evaluatio	n Scheme	
Number	Code		L	Т	Р	Internal Assessment/ Sessional	End Sem Exams	Exams (Hours)	Total
		Theory							
Th.1		Theory of Machine	4		-	20	80	3	100
Th.2		Manufacturing Technology	4		-	20	80	3	100
Th.3		Fluid Mechanics	4		-	20	80	3	100
Th.4		Thermal Engg-II	4		-	20	80	3	100
		Total	16			80	320	-	400
		Practical							
Pr.1		Theory of Machine and Measurement lab	-	-	6	25	75	3	100
Pr.2		Mechanical Engg. Lab-II	-	-	6	25	75	3	100
Pr.3		Workshop-III	-	-	6	50	50	4	100
Pr.4		Technical Seminar			2	50			50
		Student Centered Activities(SCA)		-	3				
		Total	-	-	23	150	200	-	350
		Grand Total	16	-	23	230	520	-	750
Abbreviations: L-Lecturer, T-Tutorial, P-Practical . Each class is of minimum 55 minutes duration									
Mir	nimum Pass	Mark in each Theory subject	is 35%	and ir	n each	Practical subject	is 50% and i	in Aggregate	is 40%
SCA shall (ac	SCA shall comprise of Extension Lectures/ Personality Development/ Environmental issues /Quiz /Hobbies/ Field visits/ cultural activities/Library studies/Classes on MOOCS/SWAYAM etcSeminar and SCA shall be conducted in a section.								

CURRICULLUM OF 4th SEMESTER

For

DIPLOMA IN MECHANICAL ENGINEERING (Production)

(Effective FROM 2019-20 Sessions)

STATE COUNCIL FOR TECHNICAL EDUCATION & VOCATIONAL TRAINING, ODISHA, BHUBANESWAR

TH 1 - THEORY OF MACHINES

Name of the Course: Diploma in Mech/Auto/ & Other Mechanical Allied Branches					
Course code:		Semester	4 th		
Total Period:	60	Examination	3 hrs		
Theory periods:	4 P/W	Class Test:	20		
Maximum marks:	100	End Semester Examination:	80		

A.RATIONAL:

Mechanical and Automobile engineering is involved with design, manufacturing and use of various types of machines. Each machine consists of a large number of static and moving parts called mechanisms. Theory of machines is study of such different kind of mechanisms.

B.COURSE OBJECTIVES:

Students will develop an ability towards

- Understanding machine system consisting of different link assemblies as components
- Comprehending Working principle of machine components such as clutch, brakes, bearings based on friction
- Comprehending working principles related to power transmission systems and predicting the work involved and efficiency.
- Comprehending working principle in speed and torque regulating devices such as governor and flywheels
- Determination of amount and position of masses required towards static and dynamic balancing
- Comprehending types and causes of vibration in machines and predicting remedial measures

<u>Sl. No.</u>	<u>Topic</u>	Periods
01	Simple Mechanism	08
02	Friction	12
03	Power Transmission	12
04	Governors and Flywheel	12
05	Balancing of Machine	08
06	Vibration of machine parts	08
	Total Period:	60

C. TOPIC WISE DISTRIBUTION OF PERIODS

D. CONTENT

1.0 Simple mechanism

- 1.1 Link ,kinematic chain, mechanism, machine
- 1.2 Inversion, four bar link mechanism and its inversion
- 1.3 Lower pair and higher pair
- 1.4 Cam and followers

2.0 Friction

- 2.1 Friction between nut and screw for square thread, screw jack
- 2.2 Bearing and its classification, Description of roller, needle roller& ball bearings.
- 2.3 Torque transmission in flat pivot& conical pivot bearings.
- 2.4 Flat collar bearing of single and multiple types.
- 2.5 Torque transmission for single and multiple clutches
- 2.6 Working of simple frictional brakes.

2.7 Working of Absorption type of dynamometer

3.0 Power Transmission

- 3.1 Concept of power transmission
- 3.2 Type of drives, belt, gear and chain drive.
- 3.3 Computation of velocity ratio, length of belts (open and cross) with and without slip.
- 3.4 Ratio of belt tensions, centrifugal tension and initial tension.
- 3.5 Power transmitted by the belt.
- 3.6 Determine belt thickness and width for given permissible stress for open and crossed belt considering centrifugal tension.
- 3.7 V-belts and V-belts pulleys.
- 3.8 Concept of crowning of pulleys.
- 3.9 Gear drives and its terminology.
- 3.10 Gear trains, working principle of simple, compound, reverted and epicyclic gear trains.

4.0 Governors and Flywheel

- 4.1 Function of governor
- 4.2 Classification of governor
- 4.3 Working of Watt, Porter, Proel and Hartnell governors.
- 4.4 Conceptual explanation of sensitivity, stability and isochronisms.
- 4.5 Function of flywheel.
- 4.6 Comparison between flywheel &governor.
- 4.7 Fluctuation of energy and coefficient of fluctuation of speed.

4.8 **5.0 Balancing of Machine**

- 5.1 Concept of static and dynamic balancing.
- 5.2 Static balancing of rotating parts.
- 5.3 Principles of balancing of reciprocating parts.
- 5.4 Causes and effect of unbalance.
- 5.5 Difference between static and dynamic balancing

6.0 Vibration of machine parts

- 6.1 Introduction to Vibration and related terms (Amplitude, time period and frequency, cycle)
- 6.2 Classification of vibration.
- 6.3 Basic concept of natural, forced & damped vibration
- 6.4 Torsional and Longitudinal vibration.
- 6.5 Causes & remedies of vibration.

CHAPTERS COVERED UP TO IA- 1,2,3

Learning Resources:

Sl No.	Name of the Book	Author Name	Publisher
1.	Text Book of Theory of Machine	R.S Khurmi	S.Chand
2.	Text Book of Theory of Machine	R.K. Rajput	S.Chand
3.	Text Book of Theory of Machine	P.L.Ballany	Dhanpat Rai
4.	Text Book of Theory of Machine	Thomas Bevan	Pearsion

TH-2 MANUFACTURING TECHNOLOGY

Name of the Course: Diploma in Mech/Auto/ & Other Mechanical Allied Branches					
Course code: Semester 4 th					
Total Period:	60	Examination	3 hrs		
Theory periods:	4 P/W	Class Test:	20		
Maximum marks:	100	End Semester Examination:	80		

A. RATIONAL:

Engineering basically means production of goods and services for human consumption. The major function of mechanical engineering is to manufacture various products using machineries, production processes and production management techniques. Therefore this is one of the most important subjects to be learned by a mechanical and automobile engineer.

B. COURSE OBJECTIVES:

Students will develop an ability towards

- Comprehending required material properties for cutting tools
- Comprehending machining mechanism principle and factors affecting machining performance
- Comprehendingworkingprincipleandcomponentsinmachiningtoolsincludinglathe,millin g,shaping,planning,slottingmachines
- Comprehendingrequirementofsurfacefinishandrealizeprinciplesinvolvedingrindingands uperfinishingoperations

<u>Sl. No.</u>	<u>Topic</u>	Periods
01	Tool Materials	04
02	Cutting Tools	06
03	Lathe Machine	08
04	Shaper	06
05	Planning Machine	06
06	Milling Machine	08
07	Slotter	06
08	Grinding	06
09	Internal Machining operations	06
10	Surface finish, lapping	04
	Total Period:	60

C. TOPIC WISE DISTRIBUTION OF PERIODS

D. CONTENT

1.0 Tool Materials

- 1.1 Composition of various tool materials
- 1.2 Physical properties & uses of such tool materials.

2.1 Cutting Tools

- 2.1 Cutting action of various and tools such as Chisel, hacksaw blade, dies and reamer
- 2.3 Turning tool geometry and purpose of tool angle
- 2.5 Machining process parameters (Speed, feed and depth of cut)
- 2.6 Coolants and lubricants in machining and purpose

3.0 Lathe Machine

- 3.1 Construction and working of lathe and CNC lathe
 - Major components of a lathe and their function
 - Operations carried out in a lathe(Turning, thread cutting, taper turning, internal machining, parting off, facing, knurling)
 - Safety measures during machining
- 3.2 Capstan lathe
 - Difference with respect to engine lathe
 - Major components and their function
 - Define multiple tool holders
- 3.3 Turret Lathe
 - Difference with respect to capstan lathe
 - Major components and their function
- 3.4 Draw the tooling layout for preparation of a hexagonal bolt &bush

4.0 Shaper

- 4.1 Potential application areas of a shaper machine
- 4.2 Major components and their function
- 4.3 Explain the automatic able feed mechanism
- 4.4 Explain the construction & working of tool head
- 4.5 Explain the quick return mechanism through sketch
- 4.6 State the specification of a shaping machine.

5.0 Planning Machine

- 5.1 Application area of a planer and its difference with respect to shaper
- 5.2 Major components and their functions
- 5.3 The table drive mechanism
- 5.4 Working of tool and tool support
- 5.5 Clamping of work through sketch.

6.0 Milling Machine

6.1 Types of milling machine and operations performed by them and also same for CNC milling machine

- 6.2 Explain work holding attachment
- 6.3 Construction & working of simple dividing head, universal dividing head
- 6.4 Procedure of simple and compound indexing
- 6.5 Illustration of different indexing methods

7.0 Slotter

- 7.1 Major components and their function
- 7.2 Construction and working of slotter machine
- 7.3 Tools used in slotter

8.0 Grinding

- 8.1 Significance of grinding operations
- 8.2 Manufacturing of grinding wheels
- 8.3 Criteria for selecting of grinding wheels
- 8.4 Specification of grinding wheels with example Working of
 - Cylindrical Grinder
 - Surface Grinder
 - Centreless Grinder

9.0 Internal Machining operations

Classification of drilling machines

- 9.1 Working of
 - Bench drilling machine
 - Pillar drilling machine
 - Radial drilling machine
- 9.2 Boring
 - Basic Principle of Boring
 - Different between Boring and drilling
- 9.3 Broaching
 - Types of Broaching(pull type, push type)
 - Advantages of Broaching and applications

10 Surface finish, lapping

- 10.1 Definition of Surface finish
- 10.2 Description of lapping& explain their specific cutting.

CHAPTERS COVERED UP TO IA- 1, 2,3,4,5

LearningResources:

Sl No.	Name of the Book	Author Name	Publisher
1.	Text Book of Workshop Technology	Hazra Choudhury Vol-	MPP Pvt. Ltd.
		I & II	
2.	Text Book of Workshop Technology	W.A.S Chapman	
		Vol-I & II	
3.	Text Book of Manufacturing Process	P.N Rao	TMH

TH-3 FLUID MECHANICS

Name of the Course: Diploma in Mech & Other Mechanical Allied Branches				
Course code:		Semester	4 th	
Total Period:	60	Examination	3 hrs	
Theory periods:	4 P/W	Class Test:	20	
Maximum marks:	100	End Semester Examination:	80	

A. RATIONAL:

Use of fluid in engineering field is of great importance. It is therefore necessary to study the physical properties and characteristics of fluids which have very important application in mechanical and automobile engineering.

B. COURSE OBJECTIVES:

Students will develop an ability towards

- Comprehending fluid properties and their measurements
- Realizing conditions for floatation
- Applying Bernoulli's theorem

C. TOPIC WISE DISTRIBUTION OF PERIODS

<u>Sl. No.</u>	<u>Topic</u>	Periods
01	Properties of Fluid	08
02	Fluid Pressure and its measurements	08
03	Hydrostatics	08
04	Kinematics of Flow	08
05	orifices, notches & weirs	08
06	Flow through pipe	10
07	Impact of jets	10
	Total Period:	60

D.CONTENT

1.0 Properties of Fluid

- 1.1 Define fluid
- 1.2 Description of fluid properties like Density, Specific weight, specific gravity, specific volume and solve simple problems.
- 1.3 Definitions and Units of Dynamic viscosity, kinematic viscosity, surface tension Capillary phenomenon

2.0 Fluid Pressure and its measurements

- 2.1 Definitions and units of fluid pressure, pressure intensity and pressure head.
- 2.2 Statement of Pascal's Law.
- 2.3 Concept of atmospheric pressure, gauge pressure, vacuum pressure and absolute pressure
- 2.4 Pressure measuring instruments Manometers (Simple and Differential)
 - 2.4.1 Bourdon tube pressure gauge(Simple Numerical)
- 2.5 Solve simple problems on Manometer.

3.0 Hydrostatics

- 3.1 Definition of hydrostatic pressure
- 3.2 Total pressure and centre of pressure on immersed bodies(Horizontal and Vertical Bodies)
- 3.3 Solve Simple problems.
- 3.4 Archimedes 'principle, concept of buoyancy, meta center and meta centric height (Definition only)
- 3.5 Concept of floatation

4.0 Kinematics of Flow

- 4.1 Types of fluid flow
- 4.2 Continuity equation(Statement and proof for one dimensional flow)
- 4.3 Bernoulli's theorem(Statement and proof) Applications and limitations of Bernoulli's theorem (Venturimeter, pitot tube)
- 4.4 Solve simple problems

5.0 Orifices, notches & weirs

- 5.1 Define orifice
- 5.2 Flow through orifice
- 5.3Orifices coefficient & the relation between the orifice coefficients
- 5.4 Classifications of notches & weirs
- 5.5 Discharge over a rectangular notch or weir
- 5.6 Discharge over a triangular notch or weir
- 5.7 Simple problems on above

6.0 Flow through pipe

- 6.1 Definition of pipe.
- 6.2 Loss of energy in pipes.
- 6.3 Head loss due to friction: Darcy's and Chezy's formula (Expression only)
- 6.4 Solve Problems using Darcy's and Chezy's formula.
- 6.5 Hydraulic gradient and total gradient line

7.0 Impact of jets

- 7.1 Impact of jet on fixed and moving vertical flat plates
- 7.2 Derivation of work done on series of vanes and condition for maximum efficiency.
- 7.3 Impact of jet on moving curved vanes, illustration using velocity triangles, derivation of work done, efficiency.

CHAPTERS COVERED UP TO IA-1, 2,3,4

Learning Resources:

Sl No.	Name of the Book	Author Name	Publisher
1.	Text Book of Fluid Mechanics	R.K.Bansal	Laxmi
2.	Text Book of Fluid Mechanics	R.S khurmi	S.Chand
3.	Text Book of Fluid Mechanics	R.K.Rajput	S.Chand
4.	Text Book of Fluid Mechanics	Modi & Seth	Rajson's pub. Pvt. lt

THEORY 4 - THERMAL ENGINEERING-II

Name of the Course: Diploma in Mech/ & Other Mechanical Allied Branches					
Course code: Semester 4th					
Total Period:	60	Examination	3 hr		
Theory periods:	4 P/week	Class Test:	20		
Maximum marks:	100	End Semester Examination:	80		

A. RATIONAL:

Modern society needs lots of applications of thermodynamics, which deals with energy possessed by hot vapors, its production and its application in different fields.

B. COURSE OBJECTIVES:

Student will develop ability towards.

- Understanding the power developed in I.C engine and efficiency.
- Understanding the principle, performance and application of air compressor.
- Determining thermodynamic properties of steam using steam tables & mollier chart.
- Comprehending the working of various steam generators i.e. boilers.
- Comprehending the vapor power cycles and computing work done & efficiencies thereof.

C. TOPIC WISE DISTRIBUTION OF PERIODS

<u>Sl. No.</u>	Topic	Periods
01	Performance of I. C engine	08
02	Air Compressor	12
03	Properties of steam	12
04	Steam Generator	12
05	Vapor power cycle	08
06	Heat Transfer	08
	Total Period:	60

D.CONTENT

1. Performance of I.C engine

1.1 Define mechanical efficiency, Indicated thermal efficiency,

Relative Efficiency, brake thermal efficiency overall efficiency

Mean effective pressure & specific fuel consumption.

1.2 Define air-fuel ratio & calorific value of fuel.

1.3 Work out problems to determine efficiencies & specific fuel consumption.

2. Air Compressor

- 2.1 Explain functions of compressor & industrial use of compressor air
- 2.2 Classify air compressor & principle of operation.
- 2.3 Describe the parts and working principle of reciprocating Air compressor.
- 2.4 Explain the terminology of reciprocating compressor such as bore, stroke, pressure ratio free air delivered &Volumetric efficiency.
- 2.5 Derive the work done of single stage & two stage compressor with and without clearance.
- 2.6 Solve simple problems (without clearance only)

3. Properties of Steam

- 3.1 Difference between gas & vapours.
- 3.2 Formation of steam.
- 3.3 Representation on P-V, T-S, H-S, & T-H diagram.
- 3.4 Definition & Properties of Steam.
- 3.5 Use of steam table & mollier chart for finding unknown properties.
- 3.6 Non flow & flow process of vapour.
- 3.7 P-V, T-S & H-S, diagram.
- 3.8 Determine the changes in properties & solve simple numerical.

4. Steam Generator

- 4.1 Classification & types of Boiler.
- 4.2 Important terms for Boiler.
- 4.3 Comparison between fire tube & Water tube Boiler.
- 4.4 Description & working of common boilers (Cochran, Lancashire, Babcock & Wilcox Boiler)
- 4.5 Boiler Draught (Forced, induced & balanced)
- 4.6 Boiler mountings & accessories.

5. Steam Power Cycles

- 5.1 Carnot cycle with vapour.
- 5.2 Derive work & efficiency of the cycle.
- 5.3 Rankine cycle.
 - 5.3.1 Representation in P-V, T-S & h-s diagram.
 - 5.3.2 Derive Work & Efficiency.
 - 5.3.3 Effect of Various end conditions in Rankine cycle.
 - 5.3.4 Reheat cycle & regenerative Cycle.
- 5.4 Solve simple numerical on Carnot vapour Cycle & Rankine Cycle.

6. Heat Transfer

- 6.1 Modes of Heat Transfer (Conduction, Convection, Radiation).
- 6.2 Fourier law of heat conduction and thermal conductivity (k).
- 6.3 Newton's laws of cooling.
- 6.4 Radiation heat transfer (Stefan, Boltzmann & Kirchhoff's law) only statement, no derivation & no numerical problem.
- 6.5 Black body Radiation, Definition of Emissivity, absorptivity, & transmissibility.

CHAPTERS COVERED UP TO IA- 1, 2,3.

<u>Sl No.</u>	Reference Book	Author Name	Publisher Name
1	Thermal Engineering	R.S. Khurmi	S.Chand
2	Thermal Engineering	A.R.Basu	Dhanpat Rai
3	Thermal Engineering	A.S. Sarao	Satya Prakash
4	Engineering Thermodynamics	P.k.Nag	ТМН
5	Thermal Engineering	Mahesh M Rathore	ТМН

PR-1 THEORY OF MACHINES AND MEASUREMENTS LAB

Name of the Course : Diploma in Mech/	& Other Mechanical Allied Bran	nches
Course code:	Semester	4th

Total Period:	90	Examination	3 hrs
Lab. periods:	6 P/W	Term Work	25
Maximum marks:	100	End Semester Examination:	75

SL. No Content

- 1 Determination of centrifugal force of a governor (Hart Nell / Watt/Porter).
- 2 Study & demonstration of static balancing apparatus.
- 3 Study & demonstration of journal bearing apparatus.
- 4 Study of different types of Cam and followers.
- 5 Study & demonstration of epicyclic gear train.
- 6 Determination of the thickness of ground M.S flat to an accuracy of 0.02mm using Vernier Caliper.
- 7 Determination of diameter of a cylindrical component to an accuracy of 0.01mm using micrometer.
- 8. Determine the heights of gauge blocks or parallel bars to accuracy of 0.02mm using Vernier height gauge.
- 9. Determine the thickness of ground MS plates using slip gauges.
- 10. Determination of angel of Machined surfaces of components using sin bar with slip gauges.

PR-2 MECHANICAL ENGG. LAB –II

Name of the Course: Diploma in Mech/ & Other Mechanical Allied Branches

Course codeTotal Period:90Lab. periods:6 P/WMaximum marks:100

SL. No

Content

Semester

Examination

Term Work

End Sem Examination:

4th

25

75

3 hrs

- ¹ Study of 2-S, 4-S petrol & diesel engine models
- 2 Determine the brake thermal efficiency of single cylinder petrol engine.
- 3 Determine the brake thermal efficiency of single cylinder diesel engine.
- 4 Determine the B.H.P, I.H.P BSFC of a multi cylinder engine by Morse test.
- 5 Determine the mechanical efficiency of an air Compressor.
- ⁶ Study of pressure measuring devices (manometer, Bourdon tube pressure gauge)
- 7 Verification of Bernoulli's theorem
- ⁸ Determination of Cd from venturimeter
- ⁹ Determination of Cc, Cv, Cd from orifice meter
- 10 Determine of Darcy's coefficient from flow through pipe

PR-3 WORKSHOP PRACTICE-III

Name of the Course: Diploma in Mech/ & Other Mechanical Allied Branches			
Course code:		Semester	4th
Total Period:	90	Examination	4 hrs
Lab. periods:	6 P/W	Teamwork	50
Maximum marks:	100	End Semester Examination:	50

Course Objectives:

Students will develop an ability towards

- Preparing components and jobs using foundry, welding and machining
- Realizing process parameters involved and their effects
- 1

Machining Practices

- 1.1 Job in evolving drilling, boring
- 1.2 Internal/External threading on Turning jobs
- 1.3 Job in evolving use of Capstan and turret lathe (Taper Turning & Chamfering)
- 1.4 All gear lathe, CNC Lathe Trainer Practice Job involving all turning process on MS Rod & aluminum rod for jobs using CNC Lathe trainer. Metal Machining
- 2.1 Shaper
- Preparation of V Block on CI or MS Blocks
 2.2 Milling Machine
 Preparation of Spur gear on CI or MS round

2

Name of the Course: Diploma in MECHANICAL ENGINEERING			
Course code:		Semester	4 th
Total Period:	30		
Lab. periods:	02/week	Term Work	50
Maximum marks:	50		

Pr4. TECHNICAL SEMINAR

OBJECTIVES:

Each student has to select a recent topic of latest technology in the area of Mechanical Engineering and present a seminar in front of all students of the class. He/She has to prepare a PowerPoint presentation of the selected topic of minimum 10 slides are the total presentation will be approximately 10 minutes duration .There will be interactive session between the presenter and rest of the students including the faculty members of the dept at the end of presentation .A student has to present at least 2 nos.of seminar during a semester and to submit the report for evaluation.

List of Equipments of Theory of Machine and Measurement Lab

SI. No.	Name of Apparatus	QUANTITY
01	GOVERNOR APPARATUS	01No
02	STATIC AND DYNAMIC APPARATUS	01No
03	JOURNAL BEARING APPARATUS	01 No
04	CAM ANALYSIS APPARATUS	01 No
05	EPICYCLIC GEAR TRAIN	01 No
06	VERNIER CALLIPER	04 Nos.
07	MICROMETER	04 Nos.
08	VERNIER HEIGHT GAUGE	02 Nos.
09	SLIP GAUGE	02 Nos.
10	SINE BAR	02 Nos.

List of Equipments of Workshop Practice-III

SI. No.	Name of Apparatus	QUANTITY
01	RADIAL DRILL MACHINE	01 No
02	ALL GEAR LATHE	06 Nos.
03	CAPSTAN LATHE	01 Nos.
04	CNC LATHE TRAINER	01 Nos.

List of Equipments of MEL-II

SL. NO.	NAME OF ITEM	QUANTITY
01	MODEL OF 2 STROKE PETROL ENGINE	02 Nos
02	MODEL OF 4 STROKE PETROL ENGINE	02 Nos.
03	MODEL OF 2 STROKE DIESEL ENGINE	02 Nos.
04	MODEL OF 4 STROKE DIESEL ENGINE	02Nos.
05	SINGLE CYLINDER PETROL ENGINE TEST RIG	01 No.
06	SINGLE CYLINDER DIESEL ENGINE TEST RIG	01 No.
07	MORSE TEST APPARATUS	01 No.
08	2 STAGE AIR COMPRESSOR TEST RIG	01 No.
09	PRESSURE MEASURING DEVICES (BOURDON TUBE PRESSURE GAUGE, MANOMETER)	02 Nos. each
10	BERNOULLI'S APPARATUS	01 No.
11	VENTURIMETER APPARATUS	01 No.
12	ORIFICEMETER APPARATUS	01 No
13	FLOW THROUGH PIPE APPARATUS	01 No